

global environmental solutions

Stage 2 Detailed Site Investigation Lot 103 in DP627012 and Lot 105 in DP629388 176 Mona Vale Road, St Ives NSW

Report Number 610.17035-R02

15 May 2017

Ku-ring-gai Council 818 Pacific Highway Gordon NSW 2072

Version: v1.0

Stage 2 Detailed Site Investigation Lot 103 in DP627012 and Lot 105 in DP629388 176 Mona Vale Road, St Ives NSW

PREPARED BY:

SLR Consulting Australia Pty Ltd ABN 29 001 584 612 2 Lincoln Street Lane Cove NSW 2066 Australia (PO Box 176 Lane Cove NSW 1595 Australia) T: +61 2 9427 8100 F: +61 2 9427 8200 sydney@slrconsulting.com www.slrconsulting.com

> This report has been prepared by SLR Consulting Australia Pty Ltd with all reasonable skill, care and diligence, and taking account of the timescale and resources allocated to it by agreement with the Client. Information reported herein is based on the interpretation of data collected, which has been accepted in good faith as being accurate and valid.

This report is for the exclusive use of Ku-ring-gai Council. No warranties or guarantees are expressed or should be inferred by any third parties. This report may not be relied upon by other parties without written consent from SLR.

SLR disclaims any responsibility to the Client and others in respect of any matters outside the agreed scope of the work.

DOCUMENT CONTROL

Reference	Date	Prepared	Checked	Authorised
610.17035-R02-V0.1	9 May 2017	Craig Cowper		
610.17035-R02-V1.0	15 May 2017	Craig Cowper		Craig Cowper

Executive Summary

SLR Consulting Pty Ltd (SLR) was engaged by Ku-ring-gai Council to prepare a stage 2 detailed site investigation (DSI) for 176 Mona Vale Road, St Ives, NSW (the site).

The project was undertaken in accordance with SLR's offer of services dated 13 December 2017 (ref: 610.17035-P01-v1.0 20161213).

SLR understands the following:

- The site is proposed for reclassification from community land to operational land via an amendment to the Ku-ring-gai Council Local Environment Plan (LEP) Local Centres (2012);
- The reclassification of the site will facilitate the incorporation of the land into the future planning and redevelopment of the St Ives Shopping Village;
- Development could include a commercial land use scenario, or a mixed use (commercial / high density residential) land use scenario, both involving basement car parking; and
- Council requires a stage 1 preliminary site investigation (PSI) and optional stage 2 detailed site investigation (DSI) be undertaken for the site, for inclusion with the reclassification planning proposal.

The objectives of this project were to:

- Assess the potential for contamination to be present on the site, as a result of past and present land use activities;
- Provide advice on the suitability of the site (in the context of land contamination), for the proposed reclassification;
- Provide recommendations for additional investigation, management or remediation of the site (if warranted).

SLR undertook the following scope of work to address the project objectives:

- a desktop review;
- soil and groundwater sampling;
- laboratory analysis; and
- data assessment and reporting.

Based on a review of the available desktop search data, observations made during fieldwork, and the results of sample laboratory analysis (in the context of the proposed land use scenario for the site), SLR makes the following conclusions:

- The detected concentrations of the identified contaminants of potential concern in soils on the site are considered:
 - unlikely to present an unacceptable direct contact, soil vapour or vapour intrusion human health exposure risk;
 - unlikely to present an unacceptable risk of forming observable light non-aqueous phase liquid (LNAPL), fire / explosive hazards, or to buried infrastructure e.g. penetration of, or damage to, in-ground services by hydrocarbons;
 - unlikely to present an unacceptable aesthetics risk;
- The detected concentrations of the identified contaminants of potential concern in groundwater on the site are considered unlikely to present an unacceptable vapour intrusion risk;

Executive Summary

- The site is considered unlikely to be a material source of groundwater contamination risk to freshwater aquatic ecosystems; and
- It is considered that the site would be suitable (from a contamination perspective) for a commercial or mixed use (commercial and high density residential) land use scenario.

This report must be read in conjunction with the limitations set out in Section 13 of this report.

1	INTR	ODUCT	ION	9
	1.1	Backg	round	9
	1.2	Object	ives	9
	1.3	Scope	of Work	9
2	SITE	IDENTI	FICATION	10
3	SITE	SETTIN	VG	11
	3.1	Geolog	ду	11
	3.2	Topog	raphy	11
	3.3	Hydrog	geology	11
	3.4	Acid S	ulfate Soils	11
4	PRE	VIOUS	CONTAMINATION ASSESSMENTS	12
	4.1	SLR (2	2017)	12
5	CON	CEPTU	AL SITE MODEL	13
	5.1	Areas	of Environmental Concern and Contaminants of Potential Concern	13
	5.2	Recep	tors and Pathways	13
		5.2.1	Proposed Land Use Scenario	13
		5.2.2	Human Health – Direct Contact	13
		5.2.3	Human Health – Inhalation / Vapour Intrusion	13
		5.2.4	Aesthetics	13
		5.2.5	Ecological – Terrestrial Ecosystems	13
		5.2.6	Drinking Water	14
		5.2.7	Recreational Water Use	14
		5.2.8	Agricultural (Irrigation and Stock Watering)	14
		5.2.9	Aquatic Ecosystems	14
6	DAT	A QUAL	ITY OBJECTIVES	15
	6.1	Step 1	- State the Problem	15
	6.2	Step 2	 Identify the Decision 	15
	6.3	Step 3	 Identify Inputs to the Decision 	15
		6.3.1	Human Health - Direct Contact	16
		6.3.2	Human Health – Inhalation / Vapour Intrusion	16
		6.3.3	Human Health – Asbestos	16
		6.3.4	Petroleum Hydrocarbon Compounds – Management Limits	17
		6.3.5	Aesthetics	17
		6.3.6	Aquatic Ecosystems	18
	6.4	Step 4	- Define the Study Boundaries	18
		6.4.1	Spatial Boundaries	18

7

8

9

	6.4.2	Temporal Boundaries	18
6.5	Step 5 – Develop a Decision Rule 18		
6.6	Step 6	S – Specify Acceptable Limits on Decision Errors	19
6.7	Step 7	7 – Optimise the Design for Obtaining Data	21
	6.7.1	Sampling Frequency and Locations	21
	6.7.2	Sampling Methodology	22
	6.7.3	Soil Headspace Screening	23
	6.7.4	Photographic Records	23
	6.7.5	Location Records	23
	6.7.6	Sample Identification, Storage and Transport Procedures	23
	6.7.7	Laboratory Analysis	24
	6.7.8	Fieldwork Quality Assurance / Quality Control	24
	6.7.9	Laboratory Quality Assurance / Quality Control	25
6.8	Repor	ting	26
FIEL	DWOR	K	28
7.1	Under	ground Services	28
7.2	Soil S	ampling	28
7.3	Site S	pecific Geology	29
	7.3.1	Fill Material	29
	7.3.2	Natural Material	29
7.4	Odour	rs	29
7.5	Stainir	ng	29
7.6	Poten	tial Asbestos Containing Materials	29
7.7	Heads	space Screening	29
7.8	Prelim	inary Service Pit Vapour Monitoring	29
7.9	Groun	dwater	30
	7.9.1	Monitoring Well Installation Summary	30
	7.9.2	Groundwater Sampling	30
LAB	ORATO	RY ANALYSIS	32
QUA	ALITY AS	SSURANCE / QUALITY CONTROL	33
9.1	Fieldw	vork	33
	9.1.1	Sampling	33
	9.1.2	Sample Identification, Storage and Transport	33
	9.1.3	Field Duplicates	33
	9.1.4	Trip Spike and Trip Blank	34
	9.1.5	Rinsate Blanks	34
	9.1.6	Calibration	34
9.2	Labora	atory	34

9.3	Data Quality Indicators	35
DISC	CUSSION	38
10.1	Human Health - Direct Contact Exposure Risks (Soils)	38
	10.1.1 BTEX	38
	10.1.2 TRH	38
	10.1.3 VOC	38
	10.1.4 PAH	38
	10.1.5 Organochlorine Pesticides (OCP)	38
	10.1.6 Polychlorinated Biphenyl (PCB)	38
	10.1.7 Metals	39
	10.1.8 Asbestos	39
10.2	Human Health – Vapour Intrusion (Soils)	39
	10.2.1 Soil Sample Ionisable Volatile Organic Compounds	39
	10.2.2 BTEX	39
	10.2.3 TRH	39
10.3	TRH Management Limits (Soils)	39
10.4	Aesthetics (Soils)	39
10.5	Groundwater	40
	10.5.1 Human Health – Vapour Intrusion (Groundwater)	40
	10.5.2 Ecological Health - Freshwater Ecosystems	40
CON	CLUSIONS AND RECOMMENDATIONS	41
REFI	ERENCES	42
LIMI	TATIONS	43
	 9.3 DISC 10.1 10.2 10.3 10.4 10.5 CON REF LIMI⁻ 	 9.3 Data Quality Indicators DISCUSSION 10.1 Human Health - Direct Contact Exposure Risks (Soils) 10.1.1 BTEX 10.1.2 TRH 10.1.3 VOC 10.1.4 PAH 10.1.5 Organochlorine Pesticides (OCP) 10.1.6 Polychlorinated Biphenyl (PCB) 10.1.7 Metals 10.1.8 Asbestos 10.2 Human Health - Vapour Intrusion (Soils) 10.2.1 Soil Sample Ionisable Volatile Organic Compounds 10.2.2 BTEX 10.2.3 TRH 10.3 TRH Management Limits (Soils) 10.4 Aesthetics (Soils) 10.5 Groundwater 10.5.1 Human Health - Vapour Intrusion (Groundwater) 10.5.2 Ecological Health - Freshwater Ecosystems CONCLUSIONS AND RECOMMENDATIONS REFERENCES LIMITATIONS

TABLES IN TEXT

Table 1	Areas of Environmental Concern and Contaminants of Potential Concern	13
Table 2	Health Screening Levels for asbestos contamination in soil	16
Table 3	Decision Rule If/Then Statements	19
Table 4	Data Quality Indicators	20
Table 5	Proposed Soil Borehole Drilling Summary	22
Table 6	Sample Storage and Transport Requirements	23
Table 7	Laboratory Analytical Quantities	24
Table 8	Laboratory Data Quality Indicators	26
Table 9	Limits of Reporting, Methods and Holding Times	26
Table 10	Monitoring Well Installation Summary	30
Table 11	Well Gauging Results	30
Table 12	Water Quality Parameters	31
Table 13	Data Quality Indicator Assessment Results	35

FIGURES

Figure 1	Site Locality Plan
Figure 2	Site Layout Plan

Figure 3 Areas of Environmental Concern

TABLES

Table LR1	Laboratory Analytical Results – Soils
Table LR2	Laboratory Analytical Results – Groundwater
Table LR3	Laboratory Analytical Results – % RPD

APPENDICES

- Appendix A Logs
- Appendix B Groundwater Monitoring Event Field Forms
- Appendix C Laboratory
- Appendix D Calibration

1 INTRODUCTION

1.1 Background

SLR Consulting Pty Ltd (SLR) was engaged by Ku-ring-gai Council to prepare a stage 2 detailed site investigation (DSI) for 176 Mona Vale Road, St Ives, NSW (the site).

The project was undertaken in accordance with SLR's offer of services dated 13 December 2017 (ref: 610.17035-P01-v1.0 20161213).

SLR understands the following:

- The site is proposed for reclassification from community land to operational land via an amendment to the Ku-ring-gai Council Local Environment Plan (LEP) Local Centres (2012);
- The reclassification of the site will facilitate the incorporation of the land into the future planning and redevelopment of the St Ives Shopping Village;
- Development could include a commercial land use scenario, or a mixed use (commercial / high density residential) land use scenario, both involving basement car parking; and
- Council requires a stage 1 preliminary site investigation (PSI) and optional stage 2 detailed site investigation (DSI) be undertaken for the site, for inclusion with the reclassification planning proposal.

1.2 Objectives

The objectives of this project were to:

- Assess the potential for contamination to be present on the site, as a result of past and present land use activities;
- Provide advice on the suitability of the site (in the context of land contamination), for the proposed reclassification;
- Provide recommendations for additional investigation, management or remediation of the site (if warranted).

1.3 Scope of Work

SLR undertook the following scope of work to address the project objectives:

- a desktop review;
- soil and groundwater sampling;
- laboratory analysis; and
- data assessment and reporting.

2 SITE IDENTIFICATION

The locality of the site is presented in Figure 1.

The site is identified as Lot 103 in DP627012 and Lot 15 in DP629388.

The site is irregular in shape and occupies an area of 786m².

The layout of the site is presented in Figure 2.

3 SITE SETTING

3.1 Geology

The Geological Survey of NSW Sydney 1:100,000 Geological Series Sheet 9130 Edition 1 (1983) indicates that site is likely to be underlain by Middle Triassic Ashfield Shale, comprising black to dark grey shale and laminate.

3.2 Topography

The topography of the site is generally flat, with minor north and east facing slopes. The site sits at an approximate elevation of 165m Australian height datum (AHD).

3.3 Hydrogeology

The nearest surface water courses to the site appears to be:

- South Branch of Cowan Creek located approximately 1,000m to the west of the site;
- Middle Harbour Creek located approximately 2,300m to the east of the site;
- Ku-ring-gai Creek located approximately 1,200m north east of the site; and
- High Ridge Creek located approximately 1,400m south of the site.

Based on site topography and the distance to the nearest identified surface water courses, it is considered that groundwater flow in the immediate vicinity of the site may be towards the north east.

A search of the NSW Natural Resources Atlas (NSW-NRS, <u>www.nratlas.nsw.gov.au</u>) conducted on 22 December 2016 identified a number of registered groundwater works features within the search area (500m radius of the site). A significant number of these features appeared to be monitoring wells, likely to be associated with service station land use activities.

3.4 Acid Sulfate Soils

The Department of Land and Water Conservation Hornsby / Mona Vale Acid Sulfate Soil Edition Two map indicates that site is located in an area of no known occurrence of acid sulfate soil materials.

It is noted that acid sulfate soils typically occur at elevations <10m Australian Height Datum (AHD). The site is located at an elevation of approximately 165m AHD.

Further assessment of potential or actual acid sulfate soils on the site is considered not warranted.

4 PREVIOUS CONTAMINATION ASSESSMENTS

The following contamination assessment related report was available for review as part of this investigation:

• SLR 2015, 'Stage 1 Preliminary Site Investigation, 176 Mona Vale Road, St Ives, NSW', dated 13 February 2017, ref: 610.17035-R01-v1.0.

A summary of this report is presented in Section 4.1.

4.1 SLR (2017)

The objectives of this project were to:

- Assess the potential for contamination to be present on the site, as a result of past and present land use activities;
- Provide advice on the suitability of the site (in the context of land contamination), for the proposed redevelopment;
- Provide recommendations for additional investigation, management or remediation of the site (if warranted).

SLR undertook the following scope of work to address the project objectives:

- a desktop review;
- a site walkover; and
- data assessment and reporting.

A review of available site history data and observations made during site walkover indicated a number of areas of environmental concern (AEC) and contaminants of potential concern (COPC) that were considered as requiring further assessment.

Based on a review of the available desktop search data and observations made during the site walkover, SLR concluded that:

- Areas of environmental concern (AEC) and contaminants of potential concern (in the context of land contamination), have been identified for the site;
- The potential for contamination to be present on the site as a result of past and present land use activities is considered to be low to moderate;
- It is considered that the site could be made suitable for the proposed redevelopment, subject to the undertaking of a stage 2 detailed site investigation, and implementation of management or remedial strategies to address unacceptable contamination (if warranted).

Based on these conclusions, SLR made the following recommendations:

- A stage 2 detailed site investigation (DSI) should be undertaken for the site, to further assess the identified areas of environmental concern. The DSI should also include a search of the SafeWork NSW SCID database. A sampling, analytical and quality plan (SAQP) should also be prepared for the design of the stage 2 DSI; and
- The stage 2 DSI works should be undertaken by a suitably experienced environmental consultant.

5 CONCEPTUAL SITE MODEL

5.1 Areas of Environmental Concern and Contaminants of Potential Concern

A review of available site history data and observations made during the site walkover indicated a number of areas of environmental concern (AEC) and contaminants of potential concern (COPC) that are considered as requiring further assessment. These AEC and COPC are presented in Table 1 and Figure 3.

ID	AEC	Activity of Concern	Contaminants of Potential Concern
AEC01	Former residential dwelling	Demolition	Metals and asbestos
AEC02	Carpark	Uncontrolled filling	Hydrocarbons, PCB, pesticides, metals, asbestos
AEC03	Former service station	Petroleum storage and handling, mechanical workshop	Hydrocarbons, solvents, metals

Table 1 Areas of Environmental Concern and Contaminants of Potential Concern

5.2 Receptors and Pathways

5.2.1 Proposed Land Use Scenario

It is understood that the proposed redevelopment concept for the site could include a commercial land use scenario, or a mixed use (commercial / high density residential) land use scenario, both involving basement car parking.

Based on this redevelopment concept, it is considered reasonable to adopt a 'residential with minimal opportunities for soil access' land use scenario, for a contamination exposure assessment.

5.2.2 Human Health – Direct Contact

It is considered appropriate to assess whether a direct contact exposure risk may be present on the site.

5.2.3 Human Health – Inhalation / Vapour Intrusion

It is considered appropriate to assess whether an inhalation (vapour intrusion) exposure risk may be present on the site.

5.2.4 Aesthetics

No visual evidence of widespread or significant staining was observed on the hardstand surface of the site. While it is considered that basement excavation/construction and the ground floor development concept would prevent receptor visual exposure to potential sub surface visual aesthetic impacts, an assessment for the presence of malodorous sub surface soils on the site should be made.

5.2.5 Ecological – Terrestrial Ecosystems

NEPC (1999) requires a pragmatic risk-based approach should be taken in applying ecological investigation and screening levels in residential and commercial / industrial land use settings.

It is noted that SLR (2017) did not report evidence of significant or widespread phytotoxic impact (i.e. plant stress or dieback).

A review of current aerial photography did not indicate evidence of significant or widespread phytotoxic impact (i.e. plant stress or dieback) on land adjacent to the north, east, west and south of the site.

On this basis, further assessment of unacceptable risk to terrestrial ecosystems is considered not warranted.

5.2.6 Drinking Water

SLR (2017) reported that there are no registered drinking water bores on the site or within a 500m radius of the site.

Groundwater present in the shales of western Sydney is typically poor yielding and saline in nature, making it unsuitable for use as a reliable drinking water source.

A reticulated drinking water system is present in the area the site is located in.

Further assessment of this groundwater value at the site is therefore considered not warranted.

5.2.7 Recreational Water Use

The nearest hydraulically down gradient surface water for the site is considered to be Ku-ring-gai Creek.

Ku-ring-gai Creek is not considered to be suitable for primary or secondary recreational uses.

Ku-ring-gai Creek is also located a significant distance (1,200m) from the site and therefore unlikely to be a material receptor of identified potential contamination from this site.

Further assessment of this groundwater value is considered not warranted.

5.2.8 Agricultural (Irrigation and Stock Watering)

There are no registered groundwater bores onsite or down gradient of the site, registered for agricultural use. Regional urban development is considered likely to prevent agricultural activities being undertaken both on site and on surrounding land.

Further assessment of this groundwater value is considered not warranted.

5.2.9 Aquatic Ecosystems

The nearest likely aquatic ecosystem down gradient of the site is approximately 1,000m away (Kuring-gai Creek), considered to be a freshwater environment). Given the nature of the potential contamination at the site and the significant distance of Ku-ring-gai Creek from the site, it is considered that Ku-ring-gai Creek is unlikely to be a material receptor of potential groundwater contamination from this site.

However, it is considered that sufficient data is not available to assess whether the site is a material point source contributor to groundwater impact on aquatic ecosystems in the area.

Collection of further field data is considered warranted, to facilitate whether further assessment of this ground water value is warranted.

6 DATA QUALITY OBJECTIVES

Data quality objectives (DQO) have been developed using the seven step processes described in

• NSW DEC 2006, Contaminated Sites: Guidelines for the NSW Site Auditor Scheme (2nd edition).

The DQO were presented in SLR (2015), with the first three DQO replicated in Sections 6.1 to 6.3 below.

6.1 Step 1 – State the Problem

The objectives are to:

- Assess the nature and extent of potential contamination on the site, in the identified areas of environmental concern;
- Provide advice on the suitability of the site (in the context of land contamination), for the proposed reclassification;
- Provide recommendations for additional investigation, management or remediation of the site (if warranted).

The main problems are:

- How should relevant site media be assessed;
- What sampling layout should be used; and
- What contaminants should be analysed for and by what method to be useful for assessment.

6.2 Step 2 – Identify the Decision

The decisions that need to be made during this project include:

- Is the field and laboratory analytical data suitable for assessing the quality of the media being assessed;
- Does contamination in soils and groundwater on the site present an unacceptable exposure risk for the adopted land use scenario; and
- Is the site suitable (in the context of land contamination) for the proposed redevelopment concept.

6.3 Step 3 – Identify Inputs to the Decision

The primary inputs to assessing the above include:

- the site history made available;
- location, distribution and intervals of sampling at the site;
- data collected during the assessment, including field measurements, field observations and laboratory analysis results;
- outcomes of the assessment of the quality of collected data;
- adopted exposure risk assessment criteria.

Exposure risk assessment criteria will be adopted from:

- National Environment Protection Council (NEPC) 1999, 'Schedule B(1) Guideline on Investigation Levels for Soil and Groundwater, National Environment Protection (Assessment of Site Contamination) Measure (NEPM), as amended in 2013'.
- Friebel, E & Nadebaum, P 2011, 'Health screening levels for petroleum hydrocarbons in soil and groundwater, Part 2: Application document, CRC CARE Technical Report No. 10'

6.3.1 Human Health - Direct Contact

The relevant direct contact:

- Health-Based Investigation Levels (HILs) for residential with minimal opportunities for soil access in Table 1A (1) in NEPC (1999); and
- Health Screening Levels (HSL) for residential with accessible soils access listed in Table B4 of Friebel, E & Nadebaum, P (2011);

are adopted for this assessment.

6.3.2 Human Health – Inhalation / Vapour Intrusion

For the proposed land use exposure scenario, the relevant soil HSL for vapour intrusion listed in Table 1A (3) in NEPC (1999), are adopted for this assessment.

For the proposed land use exposure scenario, the relevant

- soil HSL A for vapour intrusion listed in Table 1A (3);
- groundwater HSL A for vapour intrusion in Table 1A(4);
- soil vapour HSL A for vapour intrusion in Table 1A(5); and
- interim soil vapour HIL A in Table 1A(2)

in NEPC (1999), are adopted for this project.

If required, relevant soil analytical data will be assessed against those HSLs relevant to the soil type encountered during intrusive works on the site.

If required, relevant groundwater analytical data will be assessed against HSLs relevant to groundwater depth gauged at the time of sampling.

Should evidence of petroleum hydrocarbon contamination be identified in site soils (e.g. significant odours, elevated PID readings), then assessment of soil vapour intrusion risk should be considered (against soil vapour HSLs for vapour intrusion in Table 1A(5) in NEPC (1999)).

6.3.3 Human Health – Asbestos

NEPC (1999) provides health screening levels for asbestos contamination in soil, which are based on specific land use exposure scenarios, for three forms of asbestos: bonded asbestos containing material (ACM), friable asbestos (FA) and asbestos fines (AF). These health screening levels are provided in Table 2.

Table 2	Health Screening I	Levels for asbestos	contamination in soil
---------	--------------------	---------------------	-----------------------

Form of asbestos		Health Scree	ening Level (W/W)	
	Residential A	Residential B	Recreational C	Commercial/Industrial
ACM	0.01%	0.04%	0.02%	0.05%
FA and AF		C).001%	
All forms of asbestos		No visible asb	estos in surface soil	

The laboratory method for analysis of asbestos in bulk materials is based on AS 4964-2004. Consequently, a practical quantification limit equal to or less than 0.001% by weight is not adopted and the limit is 0.1g/kg (equivalent to 0.01% w/w). For the purposes of this project, criteria of "no visible asbestos containing materials in surface soils (top 10cm)" and "no asbestos fibres detected in samples using trace analysis techniques" has been adopted as initial screening criteria.

6.3.4 Petroleum Hydrocarbon Compounds – Management Limits

NEPC (1999) advises that management limits for petroleum hydrocarbon compounds need to be considered to minimise the potential effects of:

- Formation of observable light non-aqueous phase liquids (LNAPL);
- Fire and explosive hazards; and
- Effects on buried infrastructure e.g. penetration of, or damage to, in ground services by hydrocarbons.

For the proposed land use exposure scenario, the management limits for residential, parkland and public open space in Table 1 B(7) of NEPC (1999), are adopted for this project. Specific management limits (relevant to soil texture) will be adopted based on field assessment of predominant soil types encountered during intrusive investigations i.e. coarse grain (sands) versus fine grain (silts and clays).

6.3.5 Aesthetics

NEPC (1999) requires that aesthetic quality of accessible soils be considered even if testing suggests that the concentrations of contaminants of concern are within acceptable limits.

No specific numerical guidelines have been assigned for aesthetics. However the NEPM 2013 indicates that professional judgement with regard to quantity, type and distribution of foreign material and/or odours in relation to the specific land use and its sensitivity should be employed.

The following circumstances are considered likely to trigger further aesthetic assessment:

- highly malodorous soils or extracted groundwater (e.g. strong residual petroleum hydrocarbon odours, hydrogen sulphide in soil or extracted groundwater, organo-sulfur compounds);
- hydrocarbon sheen on surface water;
- discoloured chemical deposits or soil staining with chemical waste other than of a very minor nature;
- large monolithic deposits of otherwise low risk material, e.g. gypsum as powder or plasterboard, cement kiln dust;
- presence of putrescible refuse including material that may generate hazardous levels of methane; and
- soils containing residue from animal burial.

There are no specific numeric aesthetic guidelines, however site assessment requires balanced

- consideration of the quantity, type and distribution of foreign material or odours in relation to the
- specific land use and its sensitivity. For example, higher expectations for soil quality would apply to
- residential properties with gardens compared with industrial settings.

General assessment considerations will include:

 that chemically discoloured soils or large quantities of various types of inert refuse particularly if unsightly, may cause ongoing concern to site users;

- the depth of the materials, including chemical residues, in relation to the final surface of the site; and
- the need for, and practicality of, any long-term management of foreign material.

In some cases, documentation of the nature and distribution of the foreign material may be sufficient to address concerns relating to potential land use restrictions.

In arriving at a balanced assessment, the presence of small quantities of non-hazardous inert material and low odour residue (for example, weak petroleum hydrocarbon odours) that will decrease over time will not be a cause of concern or limit the use of a site in most circumstances. Similarly, sites with large quantities of well-covered known inert materials that present no health hazard such as brick fragments and cement wastes (for example, broken cement blocks) will be of low concern for the proposed land use scenario.

However, caution will be applied when assessing large quantities of various fill types and demolition rubble are present.

6.3.6 Aquatic Ecosystems

The groundwater investigation levels for fresh waters in Table 1C of NEPC (1999) are adopted as initial screening criteria for this assessment.

Consideration will also be given to arithmetic mean contamination concentrations in stormwater in high urban environments, when assessing potential risks posed to aquatic ecosystem receptors. Stormwater contamination concentration data will be adopted from Fletcher T, Duncan H, Poelsman P & Lloyd S (2004).

6.4 Step 4 – Define the Study Boundaries

6.4.1 Spatial Boundaries

The horizontal boundary of the project is defined by the boundary of the site.

The vertical boundary of the project for soils is defined by the depth of potentially impacted material.

The vertical boundary of the project for groundwater is defined by a depth of approximately 2m below inferred standing water level on the site.

6.4.2 Temporal Boundaries

The temporal boundaries of investigation works will be limited by:

- natural daylight working hours; and
- levels of precipitation which, in the opinion of the environmental consultant, prevents adequate visual observations to be made.

6.5 Step 5 – Develop a Decision Rule

The decision rules for the project will be as follows:

• If the results of the laboratory analytical data and field data quality assessment are acceptable (i.e. comply with the procedures, requirements and limits set out in Section 6.6, then the data will be considered suitable for the purposes of the project. Data will be assessed for completeness, comparability, representativeness, precision and accuracy.

 If the results of the laboratory analytical data are within the adopted assessment criteria and fieldwork observations are acceptable, then the level of contamination in the media assessed will be considered an acceptable exposure risk.

Specifically, a series of if/then statements specific to each area requiring assessment, is presented in Table 3.

ID	Decision Rule If/Then Statements
AEC01	If analytical results and field observations are less than adopted assessment criteria, then contamination related exposure risks are considered acceptable.
AEC02	If analytical results and field observations are less than adopted assessment criteria, then contamination related exposure risks are considered acceptable.
AEC03	If analytical results and field observations are less than adopted assessment criteria, then contamination related exposure risks are considered acceptable.

If the results of laboratory analytical data exceed the adopted assessment criteria or the fieldwork observations are unacceptable, then the level of contamination in the media assessed may require further assessment, management or remediation.

6.6 Step 6 – Specify Acceptable Limits on Decision Errors

There are two types of error:

- deciding that contamination on the site is an acceptable risk for the proposed land use when it is not; and
- deciding that contamination on the site is not an acceptable risk for the proposed land use when it is.

The assessment will aim to conclude with 95% confidence that media in the identified areas of environmental concern do not present an unacceptable risk. Consequently, the 95% upper confidence limit (UCL) statistic will be used to assess the mean concentrations of chemicals of potential concern in soil (where appropriate).

Confidence in the reliability of assessment methods (e.g. field observations, laboratory analysis and data review) will be based on appropriate levels of qualification and/or experience in the personnel undertaking the relevant task.

The data quality indicators set out in Table 4 will be used to assess data for completeness, comparability, representativeness, precision and accuracy.

Table 4Data Quality Indicators

Completeness	
Field Considerations	Laboratory Considerations
All critical locations sampled	All critical samples analysed in accordance with the data quality objectives
All samples collected (from grid and at depth)	
SOPs appropriate and complied with	All analytes analysed in accordance with the data quality objectives
Experienced sampler	Appropriate methods and LORs
Documentation correct	Sample documentation complete
	Sample holding times complied with
Company with the	
	Laboration Oracidantian
Field Considerations	Laboratory Considerations
Same SOPs used on each occasion	Sample analytical methods used (including clean-up)
Experienced sampler	Sample LORs (justify/quantify if different)
Climatic conditions	Same laboratories (justify/quantify if different)
(temperature, rainfall, wind)	Same units (justify/quantify if different)
Same types of samples collected (filtered, size fractions)	
Representativeness	
Field Considerations	Laboratory Considerations
Appropriate media sampled in accordance with the data quality objectives	All samples analysed in accordance with the data quality objectives
All media identified in data quality objectives sampled	
Precision	
Field Considerations	Laboratory Considerations
SOPs appropriate and complied with	Analysis of:
	 laboratory and inter-laboratory duplicates
	field duplicates
	laboratory-prepared volatile trip spikes
Accuracy (Dias)	Laboratory, Canaidarationa
FIEIU CONSIDERATIONS	Laboratory Considerations

Analysis of:
• field blanks
rinsate blanks
reagent blanks
method blanks
matrix spikes
matrix spike duplicates
surrogate spikes
reference materials
 laboratory control samples
 laboratory-prepared spikes

6.7 Step 7 – Optimise the Design for Obtaining Data

6.7.1 Sampling Frequency and Locations

The site covers an area of approximately 786m². NSW EPA 1995, 'Contaminated Sites: Sampling Design Guidelines' recommends a minimum of approximately 6 systematic sampling points to characterise a site of this size. SLR notes that the minimum sampling points set out in Table A in NSW EPA (1995)¹ is an approach for site characterisation based on detecting hot spots of certain diameters, using a systematic (i.e. grid based), sampling pattern, where the investigator has little knowledge about probable locations of contamination.

Section 3.1 of NSW EPA (1995) states that:

• A judgemental sampling pattern can be used where there is enough information on the probable locations of contamination

Section 6.2 of NEPC (1999b) provides guidance on undertaking judgemental sampling, sample random sampling and systematic / grid sampling. It is noted that NEPC (1999b) states that:

- judgemental sampling is based on knowledge of the site and professional judgement; and
- sampling is localised to known or potentially contaminated areas identified from knowledge of the site either from the site history or an earlier phase of site investigation; and
- judgemental sampling is commonly used to investigate sub surface contamination issues in site assessment.

Given the understanding of site history, it is considered appropriate to apply a judgemental and targeted based soil sampling pattern to address relevant areas of environmental concern, along with two groundwater monitoring wells, located at inferred up and down gradient locations.

Sampling points will be selected based on a combination of onsite accessibility, above and below ground constraints (e.g. services and buildings), and the location / extent of identified AEC.

¹ NSW EPA 1995, Contaminated Sites: Sampling Design Guidelines', dated September 1995, ref: EPA 95/59.

6.7.2 Sampling Methodology

6.7.2.1 Soil Boreholes

Soil boreholes drilled on site in accordance with the methodology presented in Table 5. Target depths are based on a number of factors including:

- Contaminant laydown mechanisms;
- Contaminant types; and
- Likely depth of contamination.

Table 5 Proposed Soil Borehole Drilling Summary

Sampling Point ID	Sampling Method	Target Depth
BH01 – BH06	Concrete coring and push tube sampler	Up to 1.5m below ground surface or 0.3m into natural material, or practical refusal, whichever occurs first
MW01 – MW02	Solid flight augers	Up to 6m below ground level, 2m below inferred standing water level, or practical refusal, whichever occurs first

6.7.2.2 Soil Sampling

Soil samples will be collected from each sampling point at the surface and then at regular depths thereafter, or where there is evidence of contamination or a change in soil lithology. Materials encountered during sampling will be logged in general accordance with the Unified Soil Classification System (UCS).

6.7.2.3 Groundwater Monitoring Wells Installation

Soil boreholes BH01 and BH02 will be further drilled (using solid flight augers) to a target depth of 6m below ground level, 2m below inferred standing water level or practical refusal (whichever occurs first).

Each bore will be finished with a groundwater monitoring well comprising 50mm PVC screen (from the base to approximately 0.5m below ground level), 50mm PVC casing, gravel pack (to the top of the screen), bentonite seal (to 0.3m above the top of the gravel pack), grout back to the surface and either a stand pipe or flush mount road box, depending on site conditions.

Wells will be screened across the inferred depth to groundwater, based on observations made during drilling.

Each monitoring well will be labelled with the respective borehole number and associated monitoring well number (e.g. BH01/MW01).

Each groundwater monitoring well will be developed using a peristaltic pump.

6.7.2.4 Groundwater Sampling

Each groundwater monitoring well will be:

- dipped using an interface probe (to assess for the presence of light non-aqueous phase liquids (LNAPL) and the standing water level gauged;
- purged until stabilisation of water quality parameters;
- sampled using low flow techniques.

Relevant samples will be field filtered to $0.45 \mu m$.

6.7.3 Soil Headspace Screening

Soil samples will be screened in the field for ionisable volatile organic compounds (VOC) using a calibrated photo-ionisation detector (PID). Screening results will be recorded on the relevant log.

6.7.4 Photographic Records

Photographs of fieldwork and other features of interest relevant to the project will be taken.

6.7.5 Location Records

The location of each sampling point will be recorded by hand on a site plan.

6.7.6 Sample Identification, Storage and Transport Procedures

Samples will be identified using unique sampling point identifiers and sample depth intervals (e.g. BH1/0.0-0.2).

Samples will be placed in laboratory prepared containers and zip lock bags, as appropriate. The sample containers will then be placed directly into an insulated chest containing ice, for transportation to the NATA accredited analytical laboratory with the chain of custody (COC) form recording the following information:

- project job number;
- date of sampling;
- sample identifier;
- sample matrix and container type;
- preservation methods used;
- analysis requirements for each sample;
- turnaround times required for analysis; and
- names and signatures of sender and receiving laboratory.

A copy of the chain of custody will be kept in the job file. Samples will be transported to the laboratory with sufficient time to perform analysis within the applicable holding period.

The proposed sample storage and transport requirements for the likely contaminants of potential concern are presented in Table 6.

Analyte	Soil Sample Container Type	Groundwater Sample Container Type	Storage and Transport
TRH C6-C10	1 x 250mL glass	2 x glass vials	Ice and insulated container
TRH >C10-C40	1 x 250mL glass	Nil	Ice and insulated container
BTEX	1 x 250mL glass	2 x glass vials	Ice and insulated container
VOC	1 x 250mL glass	2 x glass vials	Ice and insulated container
PAH	1 x 250mL glass	Nil	Ice and insulated container
Phenol	1 x 250mL glass	1 x amber glass bottle	Ice and insulated container
PCB	1 x 250mL glass	Nil	Ice and insulated container
OCP	1 x 250mL glass	Nil	Ice and insulated container
Metals	1 x 250mL glass	1 x plastic bottle	Ice and insulated container

 Table 6
 Sample Storage and Transport Requirements

Analyte	Soil Sample Container Type	Groundwater Sample Container Type	Storage and Transport
Asbestos	1 x 50-100g zip lock bag	Nil	Nil

6.7.7 Laboratory Analysis

Selected samples will be scheduled for analysis, based on identified contaminants of potential concern for the AEC that the sampling point is located in, field observations and headspace screening results, up to the quantities presented in Table 7.

Table 7 Laboratory Analytical Quantities

Sampling Point ID	TRH/BTEX	PAH	OCP/PCB	VOC	Metals	Asbestos
BH01 – BH06	6	9	3	2	9	6
MW01	2	2	-	2	2	-

In the event that field screening of samples identifies a potential for contamination to be present beyond that which can be assessed with the analytical quantities nominated in Table 7, analysis of additional samples (or additional analytes) will be considered.

6.7.8 Fieldwork Quality Assurance / Quality Control

6.7.8.1 Decontamination Procedures

Non-disposable sampling equipment will be decontaminated before and between sampling events to reduce the potential for cross contamination to occur between samples. Decontamination will include the following procedure:

- washing non-disposable sampling equipment in a solution of phosphate free detergent (e.g. Decon 90) and potable water; and
- rinsing with distilled water.

6.7.8.2 Intra-laboratory Duplicates

Intra-laboratory field duplicates will be collected on an average frequency of one sample per twenty samples collected (5%), with a minimum of one per batch (excluding samples collected for asbestos analysis). The analytical results of the two spilt samples will be compared to assess the precision of the sampling protocol, and provide an indication of variability in the sample source. The relative percentage difference (RPD) acceptance limits will be:

- No limit analytical results <10 times LOR
- 50% analytical results 10-20 times LOR
- 30% analytical results >20 times LOR

The RPD exceedances (if any) will be assessed to determine whether the project DQO's can still be addressed. If not, then further sampling and/or analysis may be required.

6.7.8.3 Inter-Laboratory Duplicates

Inter-laboratory field duplicates will be collected on an average frequency of one sample per twenty samples collected (5%) with a minimum of one per batch (excluding samples collected for asbestos analysis). The analytical results of the two spilt samples will be compared to assess the precision of the sampling protocol, and provide an indication of variability in the sample source. The relative percentage difference (RPD) acceptance limits will be:

• No limit analytical results <10 times LOR

- 50% analytical results 10-20 times LOR
- 30% analytical results >20 times LOR

The environmental consultant will assess RPD exceedances (if any) and whether the project DQO's can still be addressed. If not, then further sampling and/or analysis may be required.

6.7.8.4 Rinsate Samples

A rinsate sample will be collected and analysed for each day of field work carried out, where nondisposable sampling equipment has been used. The rinsate sample may be analysed for generally the same contaminants of potential concern that the samples are being analysed for (excluding asbestos).

The acceptance limit shall be the detected concentrations of the contaminants of concern analysed for in the sample, are less than the applicable LOR. The environmental consultant will assess the significance of the acceptance limit exceedance and whether the project DQO's can still be addressed. If not, then further sampling and/or analysis may be required.

6.7.8.5 Trip Blanks

Trip blanks will be used and analysed for a batch of samples provided to the laboratory, where the contaminants being analysed for, are volatile in nature (e.g. BTEX or TPH C_6 - C_{10}). The trip blank will be analysed for BTEX.

The acceptance limit shall be the detected concentrations of BTEX in the trip blank, are less than the applicable LOR. The environmental consultant will assess the significance of acceptance limit exceedances and whether the project DQO's can still be addressed. If not, then further sampling and/or analysis may be required.

6.7.8.6 Trip Spikes

Trip spikes will be used and analysed for a batch of samples provided to the laboratory, where the contaminants being analysed for, are volatile in nature (e.g. BTEX or TPH C_6 - C_{10}). The trip spike will be analysed for BTEX.

The acceptance limit shall be the BTEX recoveries in the trip spike are between 60% and 140%. The environmental consultant will assess the significance of acceptance limit exceedances and whether the project DQO's can still be addressed. If not, then further sampling and/or analysis may be required.

6.7.9 Laboratory Quality Assurance / Quality Control

6.7.9.1 Laboratory Selection

The primary and secondary laboratories used for this project will be NATA-accredited for the analyses being undertaken.

6.7.9.2 Laboratory Data Quality Indicators

The laboratory data quality will be assessed by checking the following:

- laboratory methods used are NATA accredited;
- laboratory limits of reporting are less than adopted assessment criteria;
- samples are extracted and analysed within holding times; and
- results of method blanks, surrogate, lab control sample, spike recoveries relative percentage differences (RPDs) between primary and duplicate laboratory samples.

Data Quality Indicators (DQI) that will be adopted for quality control samples are presented in Table 8.

Type of Quality Control Sample	Control Limit		
Method Blank	Analytical result < LOR		
Surrogate % Recovery	50% - %150%		
Labe Control Sample % Recovery	70% - 130%		
Spike % Recovery	70% - 130% for inorganics		
	60% - 140% for organics		
RPD	No limit Analytical results <10 times LOR		
	50% Analytical results 10-20 times LOR		
	30% Analytical results >20 times LOR		

Table 8 Laboratory Data Quality Indicators

Should the results of a laboratory quality control sample exceed the relevant adopted control limit, the laboratory will be requested assess the significance of the exceedance on the quality of the laboratory analytical data for the relevant batch. The environmental consultant will assess the significance of the control limit exceedance and whether the project DQO's can still be addressed. If not, then further sampling and/or analysis may be required.

6.7.9.3 Laboratory Limits of Reporting, Analytical Methods and Holding Times

Laboratory limits of reporting, analytical methods and holding times are presented in Table 9.

Analyte	Limit of Reporting (mg/kg)	Limit of Reporting (µg/L)	Method	Holding Time
BTEX and TRH C6- C10	0.2-0.5	1.0-2.0 and 50	USEPA 5030, 8260B and 8020	14 days
TRH >C10-C40	20-100	50-500	USEPA 8015B & C	14 days
PAH	0.1-0.2	-	USEPA 8270	14 days
VOC	0.1-0.5mg/kg	0.5-10	USEPA8260	14 days
OCP	0.2	-	USEPA 8081	14 days
РСВ	0.2	-	USEPA 8270	14 days
Phenol	0.1	0.01	APHA 4500 P	14 days
Metals	1	0.1-5	USEPA 200	6 months
Asbestos	Presence / Absence	-	AS4964:2004	No limit

Table 9 Limits of Reporting, Methods and Holding Times

6.8 Reporting

A stage 2 detailed site investigation report will be prepared in accordance with the relevant sections of NSW OEH 2011, 'Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites', and will include the following:

- Executive summary;
- Scope of work;
- Site identification;
- Site history summary;
- Site condition and surrounding environment summary;

- Information on geology and hydrogeology;
- Field and laboratory analytical data;
- Field and laboratory data QA/QC assessment;
- Site characterisation; and
- Conclusions and recommendations.

7 FIELDWORK

7.1 Underground Services

An online dial before you dig search was submitted on 30 March 2017 and the plans received were reviewed.

An underground service survey of proposed drilling locations was undertaken on 18 April 2017, by Geotrace, under the supervision of SLR Consulting.

7.2 Soil Sampling

Soil sampling was undertaken on 18 April 2017. A total of six soil sampling points were set out for the site (BH01 to BH06).

Soil bores were drilled by BG Drilling using a track mounted Dando Terrier drilling rig, fitted with push tube augers and solid flight augers.

Soil samples were collected from push tube liners at the surface and at regular intervals thereafter, or where there was visual or olfactory evidence of contamination observed.

Collected samples were placed into laboratory prepared jars (with Teflon lined lids) and zip lock bags. Jars and bags were labelled with a project number, sampling point and depth interval, and the date. Samples were placed in insulated containers with ice during storage on site and transport to the laboratory.

The location of each sampling point was recorded on a site plan and these locations are presented in Figure 4.

Photo 7.2.1 Soil drilling on site

7.3 Site Specific Geology

Observations of soils encountered at each borehole location were recorded and are presented in logs in Appendix A.

7.3.1 Fill Material

Fill material was encountered in the boreholes to depths ranging from 0.5m to 0.6m below ground level.

Details of fill soils encountered are included in the borehole logs presented in Appendix A. Fill soils encountered in boreholes were primarily comprised of CLAY and gravelly CLAY.

7.3.2 Natural Material

Natural material was encountered in boreholes starting at depths ranging from 0.1m to 0.7m below ground surface.

Details of natural materials encountered are included in the logs presented in Appendix A. Natural materials encountered were primarily comprised of CLAY and weathered SHALE.

7.4 Odours

Olfactory evidence of odours in soil during the sampling works, were not encountered.

7.5 Staining

Visual evidence of staining in the soil samples collected was not observed.

7.6 Potential Asbestos Containing Materials

Visual evidence of potential asbestos containing materials (ACM) in the soil samples collected was not encountered.

7.7 Headspace Screening

Headspace screening was undertaken on the samples collected and the results are presented in the logs in Appendix A. Headspace screening was undertaken by placing a sub sample of soil from each relevant sampling point/depth into a zip lock bag, sealing the bag and shaking the bag gently. Each bag was then pierced using the tip of the PID probe and the PID screening result recorded.

The results of the headspace screening indicated a low to negligible potential for ionisable volatile organic compounds to be present in the soils encountered.

7.8 Preliminary Service Pit Vapour Monitoring

Two accessible telecommunications utility service pits (located adjacent to the southern and south eastern boundary of the site) were screened on 24 April 2017 at approximately 9:15am, for the presence of ionisable volatile organic compounds, using a calibrated photoionisation detector (PID). The location of the pits (SP01 to SP02) are presented in Figure 4. The screening was undertaken as an indicator of the potential for subsurface petroleum hydrocarbon vapours to be present in the associated service trench (considered to be a potential preferential pathway for vapour migration).

The probe of the PID was inserted through a hole in the lid covering the utility pit and monitoring undertaken for a period of one minute. A reading of 1.4ppm and 2.8ppm was recorded in SP01 and SP02 respectively, indicating a negligible potential for ionisable volatile organic compounds to be present.

7.9 Groundwater

7.9.1 Monitoring Well Installation Summary

Groundwater monitoring well installation was undertaken on 18 April 2017 at two locations across the site (MW01 to MW02), under the supervision of SLR. Well installation was undertaken by BG Drilling.

Sampling Point	Method	Construction	Well Development	Developed Water Observations
MW01	Solid Flight Auger	50mm uPVC Class 18 screen and casing, gravel pack, hydrated bentonite seal, cast iron gatic	No – water not present on day of construction	Not applicable
MW02	Solid Flight Auger	50mm uPVC Class 18 screen and casing, gravel pack, hydrated bentonite seal, cast iron gatic	No – water not present on day of construction	Not applicable

Monitoring well construction details are presented in the logs in Appendix A.

7.9.2 Groundwater Sampling

Groundwater sampling was undertaken on 24 Apri3 April 2017 by SLR.

Each well was gauged using an interface probe to measure the depth to standing water level and to assess the presence of light non-aqueous phase liquids (LNAPL).

Depth to groundwater measured during well gauging is presented in Table 11.

Table 11Well Gauging Results

Monitoring Well ID	Gauged Depth To Groundwater (m)		
MW01	4.347		
MW02	2.70		

A site survey was not available to estimate the elevations of the monitoring well heads on site. However, based on site topography and the distance to the nearest identified surface water courses, it is considered that groundwater flow in the immediate vicinity of the site may be towards the north east.

Each well was then micro-purged and water quality parameters (pH, EC, Eh, DO and temperature) measured using a calibrated water quality meter and flow cell. Measured water quality parameters at the completion of purging are presented in Table 12.

Monitoring Well ID	DO (ppm)	EC (mS/cm)	рН	Eh (mV)	Temp (°C)	Colour	Odour/Sheen
MW01	1.26	5.08	4.22	254	20.6	Clear	Nil
MW02	3.255	2.29	4.75	214	21.8	Grey	Nil

Table 12 Water Quality Parameters

A copy of the groundwater monitoring event water quality parameter forms is presented in Appendix B.

Groundwater samples were collected using low flow sampling techniques. Collected samples were placed into laboratory prepared vials and bottles. The samples collected for metals analysis were subjected to filtering in the field, using $0.45\mu m$ filters. Sampling containers were labelled with a project number, sampling point identifier and sampling date.

Photo 7.9.2.1 Groundwater sampling at BH01/MW01.

8 LABORATORY ANALYSIS

A selection of soil and groundwater samples were scheduled for laboratory analysis, based on field observations and the contaminants of potential concern identified for the relevant areas of environmental concern (refer to Section 5.1).

Copies of the laboratory certificates of analysis are presented in Appendix C.

Tabulated laboratory analytical results are presented in Table LR1 and LR2.

9 QUALITY ASSURANCE / QUALITY CONTROL

9.1 Fieldwork

9.1.1 Sampling

The sampling was undertaken

- in accordance with SLR's standard operating procedures (SOP). These procedures are based on accepted industry practice for projects of this kind; and
- by a suitably experienced SLR environmental consultant (Craig Cowper);

The appropriate media (soil and groundwater) was sampled.

All critical soil sampling points were sampled.

9.1.2 Sample Identification, Storage and Transport

Samples were placed in laboratory prepared containers and zip lock plastic bags, and stored in eskies with ice, for transportation to the analytical laboratory, under chain of custody (COC) protocol. The following information was recorded on the COC:

- project job number;
- date of sampling;
- sample identifier;
- sample matrix and container type;
- preservation methods used;
- analysis requirements for each sample;
- turnaround times required for analysis; and
- names and signatures of sender and receiving laboratory.

Sample receipt advice from the receiving laboratories confirmed that the samples were received chilled (or an attempt to chill the samples was made).

A copy of the chain of custody documentation is presented in Appendix C for both the primary laboratory and the secondary laboratory.

9.1.3 Field Duplicates

A total of 12 primary soil samples were schedule for chemical analysis for the project.

Two intra-laboratory duplicates were collected and one analysed (a rate of 8.3% which addresses the minimum acceptance criterion of 5%).

Two inter-laboratory duplicates were collected and one analysed (a rate of 9.1% which addresses the minimum acceptance criterion of 5%). However, it is noted that a clerical error when completing the chain of custody, resulted in the inter-laboratory duplicate being analysed by the primary lab, rather than a secondary lab. However, the detected analyte concentrations in the primary sample, intralaboratory duplicate and inter-laboratory duplicate were all less than the relevant adopted assessment criteria, and within ranges expected, based on site history and field observations. This minor nonconformance with the data quality objectives is not considered to have a material impact on the quality of the data, or the conclusions drawn based on the data, within the context of this investigation. The parent / duplicate sample relationships and associated laboratory analytical data, is presented in Table LR3. The relative percentage difference (RPD) acceptance limits adopted were:

- No limit analytical results <10 times LOR
- 50% analytical results 10-20 times LOR
- 30% analytical results >20 times LOR

The relative percentage difference (RPD) between the parent sample and duplicates analysed, were within the RPD acceptance criteria, with the following exceptions:

 Field duplicate DUP01 and DUP01A (parent sample BH01/0.1-0.3) had an exceeding RPD for chromium. This exceedance of the adopted RPD assessment criteria is considered likely attributable to minor heterogeneity within the discrete soil sample (rather than sampling or laboratory analysis error), as the samples were not able to be homogenised prior to splitting, due to the potential for volatile contaminants to be present in this AEC. It is noted that the detected concentrations of chromium in the primary sample and both field duplicates, were well below the relevant adopted assessment criteria.

9.1.4 Trip Spike and Trip Blank

One trip spike was used during the fieldwork and one was scheduled for BTEXN analysis. The recovery results of the spike analysis were within the adopted acceptance criterion, indicating that sample preservation procedures during storage and transport were adequate for the mitigation of volatile sample losses from sample containers.

One trip blank was used during the fieldwork and one was scheduled for BTEXN analysis. The results of the blank analysis were within the adopted acceptance criterion, indicating that the potential for cross contamination of volatile contaminants between samples, during storage and transport, was negligible.

9.1.5 Rinsate Blanks

One rinsate blank sample (RB01) was collected and one was scheduled for laboratory analysis. The analyte concentrations in the rinsate sample were less than the laboratory limit of reporting, indicating that decontamination procedures of non-disposable sampling equipment were adequate.

9.1.6 Calibration

Sampling equipment used for the fieldwork included a photoionisation detector (PID), water quality meter, peristaltic pump and flow cell. A copy of the relevant calibration record for the equipment is presented in Appendix D.

9.2 Laboratory

Copies of the laboratory certificates of analysis, data quality objective reports, sample receipt advice and chain of custody records for the primary and secondary laboratories are presented in Appendix C.

The results of an assessment of laboratory analytical data quality indicate that:

- Laboratory analysis of the samples was undertaken by NATA accredited environmental testing laboratories (SGS Environmental, Alexandria NSW);
- The identified contaminants of potential concern were analysed for;
- The laboratory analytical methods and laboratory limits of reporting were appropriate for the objective of this project;
- The laboratory analytical methods and laboratory limits of reporting were consistent between the primary and secondary analytical laboratories;

- The same analytical laboratory was used for analysing all primary samples;
- The same analytical laboratory was used for analysing all secondary samples;
- Samples were extracted and analysed within applicable laboratory holding times;
- The laboratory sample surrogate recoveries were within laboratory acceptance criteria;
- The laboratory method blank analytical results were less than the laboratory limit of reporting;
- The relative percentage differences (RPD) between samples and laboratory prepared duplicates, were within the laboratories adopted acceptance criteria;
- The laboratory control sample recoveries were within the laboratory's adopted acceptance criteria;
- The laboratory matrix spike recoveries were within the laboratory's adopted acceptance criteria, with the following exceptions:
 - One metal analyte in SGS batch SE164358 and one metal analyte in SGS batch 164550. The laboratory reported that recovery failed acceptance criteria due to sample heterogeneity and the presence of a significantly high concentration of analyte (i.e. the concentration of analyte exceeded the spike level, respectively.

A copy of the laboratory data quality indicators is presented in Appendix C.

9.3 Data Quality Indicators

The assessment of field and laboratory data was compared to the data quality indicators adopted for the project. This assessment is presented in Table 13.

Table 13	Data Quality Indicator Assessment Results
----------	---

Completeness		
Field Considerations	Laboratory Considerations	Comment
All critical locations sampled All samples collected (from grid and at depth)	All critical samples analysed in accordance with the data quality objectives All analytes analysed in accordance	Acceptable
SOPs appropriate and complied with	with the data quality objectives Appropriate methods and LORs	
Experienced sampler	Sample documentation complete	
Documentation correct	Sample holding times complied with	
Comparability		
Field Considerations	Laboratory Considerations	Comment

Same SOPs used on each occasion	Sample analytical methods used (including clean-up)	Acceptable			
Experienced sampler	Sample LORs (justify/quantify if different)				
Climatic conditions (temperature, rainfall, wind)	Same laboratories (justify/quantify if different)				
Same types of samples collected (filtered, size fractions)	Same units (justify/quantify if different)				
Representativeness					
Field Considerations	Laboratory Considerations	Comment			
Appropriate media sampled in accordance with the data quality objectives	All samples analysed in accordance with the data quality objectives	Acceptable			
All media identified in DQO sampled					
Precision					
Field Considerations	Laboratory Considerations	Comment			
SOPs appropriate and complied with	Analysis of:	Acceptable			
	 laboratory and inter laboratory duplicates 				
	 field duplicates 				
	 laboratory-prepared volatile trip spikes 				
Accuracy (bias)					
Field Considerations	Laboratory Considerations	Comment			
SOPs complied	appropriate	and	Analysis of:	Acceptable	
------------------	-------------	-----	--	------------	
complied	With		 field blanks 		
			rinsate blanks		
			 reagent blanks 		
			method blanks		
			• matrix spikes		
			matrix spike duplicates		
			 surrogate spikes 		
			reference materials		
			 laboratory control samples 		
			laboratory-prepared spikes		

The data is therefore considered to be adequately complete, comparable, representative, precise and accurate for the purpose of interpretation within the objective of this project.

10 DISCUSSION

A laboratory analytical data summary table for this investigation is presented in the attached Table LR1 and LR2. The data contained in that summary table has been used for the purposes of assessing the contamination status of the site, in the context of the proposed land use scenario.

10.1 Human Health - Direct Contact Exposure Risks (Soils)

10.1.1 BTEX

The concentrations of benzene, toluene, ethyl benzene and xylenes in the site investigation samples analysed were less than the adopted investigation criteria.

Further assessment, management or remediation of BTEX direct contact exposure risks in soil at the site is considered not warranted.

10.1.2 TRH

The concentrations of TRH C6-C10, TRH >C10-C16, TRH >C16-C34 and TRH >C34-C40 in the site investigation samples analysed were less than the adopted investigation criteria.

Further assessment, management or remediation of TRH direct contact exposure risks in soil at the site is considered not warranted.

10.1.3 VOC

The concentrations of VOC compounds in the site investigation samples analysed were less than the laboratory limit of reporting.

Further assessment, management or remediation of VOC compounds direct contact exposure risks in soil at the site is considered not warranted.

10.1.4 PAH

The concentrations of relevant PAH compounds in the site investigation samples analysed were less than the adopted investigation criteria.

Further assessment, management or remediation of PAH compounds direct contact exposure risks in soil at the site is considered not warranted.

10.1.5 Organochlorine Pesticides (OCP)

The concentrations of relevant OCP compounds in the site investigation samples analysed were less than the adopted investigation criteria.

Further assessment, management or remediation of OCP compounds direct contact exposure risks in soil at the site is considered not warranted.

10.1.6 Polychlorinated Biphenyl (PCB)

The concentrations of PCB in the site investigation samples analysed were less than the adopted investigation criteria.

Further assessment, management or remediation of PCB compounds direct contact exposure risks in soil at the site is considered not warranted.

10.1.7 Metals

The concentrations of metals in the site investigation samples analysed were less than the adopted investigation criteria.

Further assessment, management or remediation of metals direct contact risks in soil at the site is considered not warranted.

10.1.8 Asbestos

No asbestos was detected in the samples analysed.

No respirable fibres were detected in the samples analysed using trace analysis techniques.

Further assessment, management or remediation of asbestos in soils at the site is considered not warranted.

10.2 Human Health – Vapour Intrusion (Soils)

10.2.1 Soil Sample Ionisable Volatile Organic Compounds

The results of the headspace screening indicated a low potential for ionisable volatile organic compounds to be present in the soils encountered.

10.2.2 BTEX

The concentrations of benzene, toluene, ethyl benzene and xylenes in the site investigation samples analysed were less than the adopted investigation criteria.

Further assessment, management or remediation of BTEX vapour intrusion risks in soil at the site is considered not warranted.

10.2.3 TRH

The concentrations of TRH C6-C10 (F1) and TRH >C10-C16 (F2) in the site investigation samples analysed were less than the adopted investigation criteria.

Further assessment, management or remediation of TRH vapour intrusion risks in soil at the site is considered not warranted.

10.3 TRH Management Limits (Soils)

The concentrations of TRH C6-C10, TRH >C10-C16, TRH >C16-C34 and TRH >C34-C40 in the site investigation samples analysed were less than the adopted management limit investigation criteria.

10.4 Aesthetics (Soils)

Evidence of widespread or significant staining, buried wastes, odour or potential asbestos containing materials, was not observed in the soils encountered during intrusive works. Further assessment, management or remediation of these potential aesthetic impacts on site is considered not warranted.

10.5 Groundwater

10.5.1 Human Health – Vapour Intrusion (Groundwater)

The results of the laboratory analysis indicate that the concentrations of the contaminants of potential concern in the groundwater samples, were less than the adopted groundwater vapour intrusion assessment criteria, with concentrations of TRH C6-C10, TRH >C10-C16, BTEX and naphthalene less than the laboratory limit of reporting, with the exception of toluene, which was above the limit of reporting at 1.7 μ g/L and 0.9 μ g/L in MW01 and MW02 respectively, however the relevant vapour intrusion criterion is 'not limiting' (NL)², and so the detected toluene concentrations are less than the relevant adopted site investigation criteria.

No further assessment of these contaminants of concern in groundwater (with respect to vapour intrusion) is considered warranted.

10.5.2 Ecological Health - Freshwater Ecosystems

The results of the laboratory analysis indicate that the concentrations of the contaminants of potential concern in the groundwater samples, were less than the adopted marine ecosystem assessment criteria, with exception of

- Arsenic in MW01 (19µg/L), with a criterion of 13µg/L;
- Cadmium in MW01 (19µg/L) and MW02 (1µg/L), with a criterion of 0.2µg/L;
- Copper in MW01 (370µg/L) and MW02 (88µg/L), with a criterion of 1.4µg/L;
- Nickel in MW01 (240µg/L) and MW02 (19µg/L), with a criterion of 11µg/L; and
- Zinc in MW01 (2,100µg/L) and MW02 (110µg/L), with a criterion of 8µg/L.

It is noted that the concentrations of arsenic, cadmium, copper, nickel and zinc detected in the fill and natural soil samples collected from site and analysed by the laboratory, were all within background ranges set out in Berkman DA 1989, 'Field Geologists Manual, Third Edition' published by the Australasian Institute of Mining and Metallurgy. Consequently, the presence of an onsite source for groundwater contamination by these metals is considered unlikely. SLR considers it reasonable that the concentrations of these metals in groundwater may be associated with an offsite source and/or they may be associated with regional groundwater phenomenon.

Further assessment of potential arsenic, cadmium, copper, nickel and zinc site related contamination risk to groundwater (in the context of freshwater ecosystem receptors) is considered not warranted.

² Table 1A(4) in NEPC (1999) states that if the derived groundwater criterion exceeded the water solubility limit, a soil vapour source concentration for a petroleum mixture could not exceed a level that would result in the maximum allowable vapour risk for the given scenario, consequently resulting in a "not limiting" screening level being adopted.

11 CONCLUSIONS AND RECOMMENDATIONS

Based on a review of the available desktop search data, observations made during fieldwork, and the results of sample laboratory analysis (in the context of the proposed land use scenario for the site), SLR makes the following conclusions:

- The detected concentrations of the identified contaminants of potential concern in soils on the site are considered:
 - unlikely to present an unacceptable direct contact, soil vapour or vapour intrusion human health exposure risk;
 - unlikely to present an unacceptable risk of forming observable light non-aqueous phase liquid (LNAPL), fire / explosive hazards, or to buried infrastructure e.g. penetration of, or damage to, in-ground services by hydrocarbons;
 - unlikely to present an unacceptable aesthetics risk;
- The detected concentrations of the identified contaminants of potential concern in groundwater on the site are considered unlikely to present an unacceptable vapour intrusion risk;
- The site is considered unlikely to be a material source of groundwater contamination risk to freshwater aquatic ecosystems; and
- It is considered that the site would be suitable (from a contamination perspective) for a commercial or mixed use (commercial and high density residential) land use scenario.

This report must be read in conjunction with the limitations set out in Section 13 of this report.

12 **REFERENCES**

Friebel, E & Nadebaum, P 2011, 'Health screening levels for petroleum hydrocarbons in soil and groundwater. Part 2: Application document', CRC CARE Technical Report No. 10.

National Environment Protection Council (NEPC) 1999a, 'Schedule B(1) Guideline on Investigation Levels for Soil and Groundwater, National Environment Protection (Assessment of Site Contamination) Measure (NEPM) as amended in May 2013'.

National Environment Protection Council (NEPC) 1999b, 'Schedule B(2) Guideline on Site Characterisation, National Environment Protection (Assessment of Site Contamination) Measure (NEPM) as amended in May 2013'.

NSW DEC 2006, 'Contaminated Sites: Guidelines for the NSW Site Auditor Scheme (2nd edition)'.

NSW OEH 2011, 'Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites'.

SLR 2015, 'Stage 1 Preliminary Site Investigation, 176 Mona Vale Road, St Ives, NSW', dated 13 February 2017, ref: 610.17035-R01-v1.0.

13 LIMITATIONS

This report is for the exclusive use of Ku-ring-gai Council. No warranties or guarantees are expressed or should be inferred by any third parties. This report may not be relied upon by other parties without written consent from SLR Consulting.

This report has been prepared based on the scope of services (see below). SLR Consulting cannot be held responsible to the Client and/or others for any matters outside the agreed scope of services. Other parties should not rely upon this report and should make their own enquiries and obtain independent advice in relation to such matters.

This report has been prepared by SLR Consulting with reasonable skill, care and diligence, and taking account of the timescale and resources allocated to it by agreement with the Client. Information reported herein is based on the interpretation of data collected (data, surveys, analyses, designs, plans and other information), which has been accepted in good faith as being accurate and valid.

It should be noted that many investigations are based upon an assessment of potentially contaminating processes which may have occurred historically on the site. This assessment is based upon historical records associated with the site. Such records may be inaccurate, absent or contradictory. In addition documents may exist which are not readily available for public viewing.

Except where it has been stated in this report, SLR Consulting has not verified the accuracy or completeness of the data relied upon. Statements, opinions, facts, information, conclusions and/or recommendations made in this report ("conclusions") are based in whole or part on the data obtained, those conclusions are contingent upon the accuracy and completeness of the data. SLR Consulting cannot be held liable should any data, information or condition be incorrect or have been concealed, withheld, misrepresented or otherwise not fully disclosed to SLR Consulting leading to incorrect conclusions.

Should the report be reviewed for any reason, the report must be reviewed in its entirety and in conjunction with the associated Scope of Services. It should be understood that where a report has been developed for a specific purpose, for example a due diligence report for a property vendor, it may not be suitable for other purposes such as satisfying the needs of a purchaser or assessing contamination risks for classifying the site. The report should not be applied for any purpose other than that originally specified at the time the report was issued.

Report logs, figures, laboratory data, drawings, etc. are generated for this report by SLR consultants (unless otherwise stated) based on their individual interpretation of the site conditions at the time the site visit was undertaken. Although SLR consultants undergo training to achieve a standard of field reporting, individual interpretation still varies slightly. Information should not under any circumstances be redrawn for inclusion in other documents or separated from this report in any way.

Figures Report Number 610.17035-R02 Page 1 of 1 FIGURES

Tables Report Number 610.17035-R02 Page 1 of 1 TABLES

Table LR1 Laboratory Analytical Results - Soils

						Sample Name Description	SE164358.001 BH01/0.1-0.3	SE164358.002 BH02/0.15-0.35	SE164358.003 BH02/0.5-0.7	SE164358.004 BH03/0.3-0.5	SE164358.005 BH03/0.6-0.8	SE164358.006 BH04/0.4-0.6	SE164358.007 BH04/0.6-0.8	SE164358.008 BH05/0.2-0.4	SE164358.009 BH06/0.3-0.5	SE164358.010 BH06/0.7-0.9
						Sample Date Matrix	18-4-2017 Soil	18-4-2017 Soil	18-4-2017 Soil	18-4-2017 Soil	18-4-2017 Soil	18-4-2017 Soil	18-4-2017 Soil	18-4-2017 Soll	18-4-2017 Soil	18-4-2017 Soil
		Direct Contact HIL -	Vapour Intrusion	Vapour Intrusion	Management Limits for TPH											
Analyte Name	Units	Residential B (mg/kg)	0 mito<1 m (mg/kg)	1 m to <2 m (mg/kg)	Fraction F1-F4 in soli (mg/kg)	Reporting Limit	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
BTEXN in Soll Benzene	mg/kg	140	0.5	0.5		0.1	<0.1	<0.1	N.A.	< 0.1	N.A.	<0.1	<0.1	<0.1	<0.1	N.A.
Ethylbenzene Total Xvienes	mg/kg mg/kg	21000 5900 17000	55	220 NL 60		0.1	<0.1	<0.1	N.A. N.A.	<0.1	N.A. N.A.	<0.1	<0.1	<0.1	<0.1	N.A. N.A.
Naphthalene	mg/kg	2200	3	NL		0.1	<0.1	<0.1	N.A.	< 0.1	N.A.	<0.1	<0.1	<0.1	<0.1	N.A.
VOC in Soil Dichlorodifluoro metha ne (CF C-12)	mg/kg					1	N.A.	<1	N.A.	N.A.	N.A.	<1	N.A.	N.A.	N.A.	N.A.
Chloromethane Vinyl chloride (Chloroethene)	mg/kg mg/kg					0.1	N.A. N.A.	<1	N.A. N.A.	N.A. N.A.	N.A. N.A.	<1	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.
Chloroethane Trichlorofluoromethane	mg/kg mg/kg					1	N.A. N.A.	<1	N.A. N.A.	N.A. N.A.	N.A. N.A.	<1	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.
Acetone (2-propanone) lodomethane	mg/kg mg/kg					10 5	N.A. N.A.	<10 <5	N.A. N.A.	N.A. N.A.	N.A. N.A.	<10 <5	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.
1,1-dichloroethene Acrylonitrile	mg/kg mg/kg					0.1	N.A. N.A.	<0.1 <0.1	N.A. N.A.	N.A. N.A.	N.A. N.A.	<0.1 <0.1	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.
Dichloromethan e (Methylen e chloride) Allyl chloride Carbon disulfide	mg/kg mg/kg					0.5	N.A. N.A.	<0.5	N.A. N.A.	N.A. N.A.	N.A. N.A.	<0.5	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.
trans-1,2-dichloroethene MtBE (Methyl-tert-butylether)	mg/kg mg/kg					0.1	N.A. N.A.	<0.1	N.A. N.A.	N.A. N.A.	N.A. N.A.	<0.1	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.
1,1-dichloroethane Vinyl acetate	mg/kg mg/kg					0.1 10	N.A. N.A.	<0.1 <10	N.A. N.A.	N.A. N.A.	N.A. N.A.	<0.1 <10	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.
MEK (2-butanone) cis-1,2-dichloroethene	mg/kg mg/kg					10 0.1	N.A. N.A.	<10 <0.1	N.A. N.A.	N.A. N.A.	N.A. N.A.	<10 <0.1	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.
Bromochioromethane Chloroform 2.2-dichloroprocesse	mg/kg mg/kg					0.1	N.A. N.A.	<0.1	N.A. N.A.	N.A. N.A.	N.A. N.A.	<0.1	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.
1,2-dichloroethane 1,1,1-trichloroethane	mg/kg mg/kg					0.1	N.A. N.A.	<0.1	N.A. N.A.	N.A. N.A.	N.A. N.A.	<0.1	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.
1,1-dichloropropen e Carbon tetrachloride	mg/kg mg/kg					0.1 0.1	N.A. N.A.	<0.1 <0.1	N.A. N.A.	N.A. N.A.	N.A. N.A.	<0.1 <0.1	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.
Dibromomethane 1,2-dichloropropane	mg/kg mg/kg					0.1	N.A.	<0.1	N.A.	N.A. N.A.	N.A.	<0.1	N.A.	N.A. N.A.	N.A. N.A.	N.A.
2-nitro pro pane Bromodichloro methane	mg/kg mg/kg				-	10	N.A. N.A.	<10	N.A. N.A.	N.A. N.A.	N.A. N.A.	<10	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.
MIBK (4-methyl-2-pentanone) cis-1,3-dichloropropene	mg/kg mg/kg					0.1	N.A.	<1	N.A. N.A.	N.A. N.A.	N.A. N.A.	<1	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.
trans-1,3-dichloropropene 1,1,2-trichloroethane	mg/kg mg/kg					0.1 0.1	N.A. N.A.	<0.1 <0.1	N.A. N.A.	N.A. N.A.	N.A. N.A.	<0.1 <0.1	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.
1,3-dic Noropropane Chlorodibromomethane 2-bexanone (MBK)	mg/kg mg/kg					0.1	N.A. N.A.	<0.1	N.A. N.A.	N.A. N.A.	N.A. N.A.	<0.1	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.
1,2-dibromoethane (EDB) Tetrachloroethene (Perchloroethylene,PCE)	mg/kg mg/kg					0.1	N.A. N.A.	<0.1 <0.1	N.A. N.A.	N.A. N.A.	N.A. N.A.	<0.1	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.
1,1,1,2-tetrachloroethane Chlorobenzene	mg/kg mg/kg					0.1	N.A. N.A.	<0.1 <0.1	N.A. N.A.	N.A. N.A.	N.A. N.A.	<0.1 <0.1	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.
Bromoform cis-1,4-dichloro-2-butene	mg/kg mg/kg					0.1	N.A.	<0.1	N.A. N.A.	N.A. N.A.	N.A.	<0.1	N.A.	N.A.	N.A. N.A.	N.A. N.A.
Styrene (Vinyi benzene) 1,1,2,2-tetrachbroethane 1,2,3-trichbrooronane	mg/kg mg/kg					0.1	N.A. N.A.	<0.1 <0.1 <0.1	N.A. N.A.	N.A. N.A.	N.A. N.A.	<0.1	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.
trans-1,4-dichloro-2-butene Isopropylbenzene (Cumene)	mg/kg mg/kg					0.1	N.A.	<1	N.A. N.A.	N.A. N.A.	N.A. N.A.	<1	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.
Bromobenzene n-propylbenzene	mg/kg mg/kg					0.1 0.1	N.A. N.A.	<0.1 <0.1	N.A. N.A.	N.A. N.A.	N.A. N.A.	<0.1 <0.1	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.
2-c hloro to lue ne 4-c hloro to lue ne 1.2.5 trime the lle escono	mg/kg mg/kg					0.1	N.A. N.A.	<0.1	N.A. N.A.	N.A. N.A.	N.A. N.A.	<0.1	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.
tert-butylbenzene 1.2.4-trimethylbenzene	mg/kg mg/kg					0.1	N.A. N.A.	<0.1	N.A.	N.A. N.A.	N.A. N.A.	<0.1	N.A. N.A.	N.A.	N.A.	N.A.
sec-butylbenzene 1,3-dichlorobenzene	mg/kg mg/kg					0.1 0.1	N.A. N.A.	<0.1 <0.1	N.A. N.A.	N.A. N.A.	N.A. N.A.	<0.1 <0.1	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.
1,4-dichlorobenzene p-isopropyttoluene	mg/kg mg/kg					0.1 0.1	N.A. N.A.	<0.1 <0.1	N.A. N.A.	N.A. N.A.	N.A. N.A.	<0.1 <0.1	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.
1,2-dichlorobenzene n-butylbenzene 1,2-dibmmo-3-chlomomosne	mg/kg mg/kg					0.1	N.A. N.A.	<0.1	N.A. N.A.	N.A. N.A.	N.A. N.A.	<0.1	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.
1,2,4-trichlorobenzene Hexachlorobutadiene	mg/kg mg/kg					0.1	N.A. N.A.	<0.1 <0.1	N.A. N.A.	N.A. N.A.	N.A. N.A.	<0.1	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.
1,2,3-trichlorobenzene	mg/kg					0.1	N.A.	<0.1	N.A.	N.A.	N.A.	<0.1	N.A.	N.A.	N.A.	N.A.
TRH in Soll Benzene (F0)	mg/kg	140				0.1	<0.1	<0.1	N.A.	< 0.1	N.A.	<0.1	<0.1	<0.1	<0.1	N.A.
TRH C6-C10 TRH C6-C10 minus BTEX (F1) TRH >C10-C16 (F2)	mg/kg mg/kg	4200	45	70	1000	25 25 25	<25	<25 <25 <25	N.A. N.A.	<25	N.A. N.A.	<25	<25	<25	<25 <25 <25	N.A. N.A.
TRH >C10-C16 (F2) - Naphthalene TRH >C16-C34 (F3)	mg/kg mg/kg	5800	110	240	3500	25 90	<25 <90	<25 <90	N.A. N.A.	<25 <90	N.A. N.A.	<25 <90	<25 <90	<25	<25 <90	N.A. N.A.
TRH >C34-C40 (F4)	mg/kg	8100			10000	120	<120	<120	N.A.	<12.0	N.A.	<120	<120	<120	<120	N.A.
PAH in Soli Naphthalene 2-methylpachthalene	mg/kg	2200				0.1	<0.1	<0.1	N.A.	< 0.1	N.A.	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylna phtha lene Ace na phthyle ne	mg/kg mg/kg					0.1	<0.1 <0.1	<0.1	N.A. N.A.	< 0.1	N.A. N.A.	<0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1
Ace na phthene Fluore ne	mg/kg mg/kg					0.1	<0.1 <0.1	<0.1 <0.1	N.A. N.A.	< 0.1 < 0.1	N.A. N.A.	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1
Phenanthrene Anthracene	mg/kg mg/kg					0.1	<0.1	<0.1	N.A. N.A.	<0.1	N.A. N.A.	<0.1	<0.1	<0.1	0.1 <0.1	<0.1
Pyrene Benzo (a) anthracene	mg/kg mg/kg					0.1	<0.1	<0.1	N.A. N.A.	<0.1	N.A. N.A.	<0.1	<0.1	<0.1	0.1 <0.1	<0.1
Chrysene Benzo (b&j) fluoran thene	mg/kg mg/kg					0.1 0.1	<0.1 <0.1	<0.1 <0.1	N.A. N.A.	< 0.1 < 0.1	N.A. N.A.	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1
Benzo (k) fluoranthene Benzo (a) pyrene Indene (1,2,3, ed) sympo	mg/kg mg/kg					0.1	<0.1	<0.1	N.A. N.A.	<0.1	N.A. N.A.	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo (a h) an thracene Benzo (a h) pervlene	mg/kg mg/kg					0.1	<0.1	<0.1	N.A. N.A.	< 0.1	N.A. N.A.	<0.1	<0.1	<0.1	<0.1 <0.1 <0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0 Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ TEQ (mg/kg)</td><td>4</td><td></td><td></td><td></td><td>0.2</td><td><0.2 <0.3</td><td><0.2 <0.3</td><td>N.A. N.A.</td><td>< 0.2 < 0.3</td><td>N.A. N.A.</td><td><0.2 <0.3</td><td><0.2 <0.3</td><td><0.2 <0.3</td><td><0.2 <0.3</td><td><0.2 <0.3</td></lor=lor<></lor=0 	TEQ TEQ (mg/kg)	4				0.2	<0.2 <0.3	<0.2 <0.3	N.A. N.A.	< 0.2 < 0.3	N.A. N.A.	<0.2 <0.3	<0.2 <0.3	<0.2 <0.3	<0.2 <0.3	<0.2 <0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<br="">Total PAH (18)</lor=lor>	TEQ (mg/kg) mg/kg					0.2	<0.2	<0.2 <0.8	N.A. N.A.	< 0.2	N.A. N.A.	<0.2	<0.2	<0.2	<0.2	<0.2
	mg/kg	400				0.8	<0.8	<0.8	N.A.	< 0.8	N.A.	<0.8	<0.8	<0.8	<0.8	<0.8
Hexachloroben zene (HCB) Alpha BHC	mg/kg mg/kg	15				0.1 0.1	N.A. N.A.	N.A. N.A.	N.A. N.A.	< 0.1 < 0.1	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	<0.1 <0.1	N.A. N.A.
Lindane Heptachlor	mg/kg mg/kg	10				0.1	N.A.	N.A. N.A.	N.A.	< 0.1	N.A. N.A.	N.A.	N.A. N.A.	N.A. N.A.	<0.1 <0.1	N.A.
Diekdrin Beta BHC	mg/kg mg/kg	10				0.1	N.A. N.A.	N.A. N.A.	N.A. N.A.	<0.2	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	<0.1	N.A. N.A.
Delta BHC Heptachlorepoxide	mg/kg mg/kg					0.1 0.1	N.A. N.A.	N.A. N.A.	N.A. N.A.	< 0.1 < 0.1	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	<0.1 <0.1	N.A. N.A.
o,p'-DDT p,p'-DDT	mg/kg mg/kg					0.1	N.A. N.A.	N.A. N.A.	N.A. N.A.	< 0.1	N.A. N.A.	N.A.	N.A.	N.A.	<0.1	N.A. N.A.
o,p+DDE p,p+DDE o,p+DDD	mg/kg mg/kg	600				0.1	N.A. N.A.	N.A. N.A.	N.A. N.A.	<0.1	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	<0.1	N.A. N.A.
p,p'-DDD Alpha Endosulfan	mg/kg mg/kg	400				0.1	N.A. N.A.	N.A. N.A.	N.A. N.A.	< 0.1 < 0.2	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	<0.1 <0.2	N.A. N.A.
Beta Endosulfan Gamma Chlordane	mg/kg mg/kg	90				0.2	N.A. N.A.	N.A. N.A.	N.A. N.A.	< 0.2 < 0.1	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	<0.2 <0.1	N.A. N.A.
Alpha Chlordane trans-Nonachlor Eadrin	mg/kg mg/kg					0.1	N.A. N.A.	N.A. N.A.	N.A. N.A.	<0.1	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	<0.1	N.A. N.A.
Endosulfan sulphate Endrin Aklehvde	mg/kg mg/kg	20				0.1	N.A. N.A.	N.A. N.A.	N.A. N.A.	<0.2 <0.1 <0.1	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	<0.2	N.A. N.A.
Methoxychlor Endrin Ketone	mg/kg mg/kg	500				0.1 0.1	N.A. N.A.	N.A. N.A.	N.A. N.A.	< 0.1 < 0.1	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	<0.1 <0.1	N.A. N.A.
lsod rin Mire x	mg/kg mg/kg	20				0.1	N.A. N.A.	N.A. N.A.	N.A. N.A.	< 0.1 < 0.1	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	<0.1 <0.1	N.A. N.A.
PCB in Soil	ma/ka					0.2	NA	NA	N A	NA	NA	<0.2	NA	<0.2	NA	NA
Aroc hlo r 1221 Aroc hlo r 1232	mg/kg mg/kg					0.2	N.A. N.A.	N.A.	N.A.	N.A. N.A.	N.A.	<0.2	N.A.	<0.2	N.A.	N.A. N.A.
Arochlor 1242 Arochlor 1248	mg/kg mg/kg					0.2	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	<0.2 <0.2	N.A. N.A.	<0.2 <0.2	N.A. N.A.	N.A. N.A.
Arochlor 1254 Arochlor 1260	mg/kg mg/kg					0.2	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	<0.2 <0.2	N.A. N.A.	<0.2	N.A. N.A.	N.A. N.A.
Arochlor 12 62 Arochlor 12 68 Total PCBs (Arochlors)	mg/kg mg/kg ma/ko	1				0.2	N.A. N.A. N.A	N.A. N.A.	N.A. N.A. N.A	N.A. N.A. N.A	N.A. N.A. N.A	<0.2 <0.2 <1	N.A. N.A.	<0.2 <0.2 <1	N.A. N.A. N.A	N.A. N.A. N.A
Motais in Soil																
Arsenic, As Cadmium, Cd	mg/kg mg/kg	500 150				3 0.3	6 0.3	4 <0.3	<3 <0.3	3 < 0.3	<3 0.5	3 <0.3	N.A. N.A.	1 3 <0.3	3 <0.3	3 <0.3
Copper, Cu Lead Pb	mg/kg mg/kg	500 30000 4200				0.3 0.5 1	30 0.7 20	7.1 3.5 49	2.2 1.9 R	26 7.7 45	15 3.6 20	19 35 44	N.A. N.A.	14 1.5 10	37 21 11	7.6 3.0 4 F
Nickel, Ni Zinc, Zn	mg/kg mg/kg	1200				0.5	<0.5 3.3	2.7 8.1	<0.5 <0.5	20 12	<0.5 4.5	38	N.A. N.A.	<0.5 2.5	34 26	<0.5 1.5
Mercury	mg/kg	120				0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	N.A.	<0.05	< 0.05	< 0.05
Asbestos in Soil Asbestos Detected	No unit	Yes				0	N.A.	No	N.A.	No	N.A.	No	N.A.	No	No	N.A.

Table LR2 Laboratory Analytical Results - Groundwater

			-	Description	MW01	SE 164550.002 MW02
		NEBC Cill o (Ecosh Water) / ANZECC		Sample Date Matrix	24-4-2017 Water	24-4-2017 Water
Analvte Name	Units	2000 Freshwater Low Reliability Trigger	Groundwater HSL for Vapour Intrusion (µg/L)	Reporting Limit	Result	Result
BTEXN In Groundwater Benzene	ua/L	950	800	0.5	<0.5	< 0.5
Toluene Fithvihenzene	µg/L	180	NL NI	0.5	1.4	0.9
m/p-xylene	µg/L	200		1	<1	<1
Total Xylenes	µg/L µg/L	550	NL	1.5	<1.5	<1.5
Naphthalene	µg/L	16	NL	0.5	<0.5	<0.5
VOC in Groundwater Dichlorodifluoromethane (CFC-12)	µg/L			5	<5	<5
Chloromethane Vinvl chloride (Chloroethene)	µg/L µg/L			5 0.3	<5 <0.3	<5 <0.3
Bromomethane	µg/L			10	<10	<10
Trichlorofluoromethane	µg/L µg/L			1	<1	<1
lodomethane	µg/L µg/L			5	< 10 <5	<10 <5
1,1-dichloroethene Acrylonitrile	µg/L µg/L			0.5 0.5	<0.5 <0.5	<0.5 <0.5
Dichloromethane (Methylene chloride) Allyl chloride	µg/L µg/L			5 2	<5 <2	<5 <2
Carbon disulfide trans-1.2-dichloroethene	µg/L µg/L			2	<2 <0.5	<2 <0.5
MtBE (Methyl-tert-butyl ether)	µg/L			2	<2	<2
Vinyl acetate	µg/L µg/L			10	<10	<10
MEK (2-butanone) cis-1,2-dichloroethene	µg/L µg/L			10 0.5	<10	<10 <0.5
Bromochloromethane Chloroform (THM)	µg/L µg/L	370		0.5	<0.5 <0.5	<0.5 0.7
2,2-dichloropropane 1,2-dichloroethane	µg/L µa/l			0.5	<0.5 <0.5	<0.5 <0.5
1,1,1-trichloroethane 1 1-dichloropropene	µg/L			0.5	<0.5	<0.5
Carbon tetrachloride	µg/L µg/L			0.5	<0.5	<0.5
Ubromomethane 1,2-dichloropropane	µg/L µg/L			0.5 0.5	<0.5 <0.5	<0.5 <0.5
Trichloroethene (Trichloroethylene,TCE) 2-nitropropane	μg/L μg/L			0.5	<0.5 <100	<0.5 <100
Bromodichloromethane (THM) MIBK (4-methyl-2-pentanone)	µg/L µg/L			0.5 5	<0.5 <5	<0.5 <5
cis-1,3-dichloropropene	µg/L			0.5	<0.5	<0.5
1,1,2 trichloroethane	µg/L µg/L			0.5	<0.5	<0.5
1,3-dichloropropane Dibromochloromethane (THM)	µg/L µg/L			0.5 0.5	<0.5	<0.5 <0.5
2-hexanone (MBK) 1,2-dibromoethane (EDB)	μg/L μg/L			5 0.5	<5 <0.5	<5 <0.5
Tetrachloroethene (Perchloroethylene,PCE) 1.1.1.2-tetrachloroethane	µg/L µg/L			0.5 0.5	<0.5 <0.5	<0.5 <0.5
Chlorobenzene	µg/L			0.5	<0.5	< 0.5
cis-1,4-dichloro-2-butene	µg/L µg/L			1	<1	<1
Styrene (Vinyl benzene) 1,1,2,2-tetrachloroethane	µg/L µg/L			0.5	<0.5 <0.5	<0.5 <0.5
1,2,3-trichloropropane trans-1,4-dichloro-2-butene	μg/L μg/L			0.5 1	<0.5 <1	<0.5 <1
lsopropylbenzene (Cumene) Bromobenzene	µg/L µg/L			0.5 0.5	<0.5 <0.5	<0.5 <0.5
n-propylbenzene 2-chlorotoluene	µg/L			0.5	<0.5	<0.5 <0.5
4-chlorotoluene	µg/L			0.5	<0.5	<0.5
trational and the second sec	µg/L µg/L			0.5	<0.5	<0.5
1,2,4-trimethylbenzene sec-butylbenzene	µg/L µg/L			0.5 0.5	<0.5	<0.5 <0.5
1,3-dichlorobenzene 1,4-dichlorobenzene	μg/L μg/L			0.5	<0.5 <0.3	<0.5 <0.3
p-isopropyltoluene 1.2-dichlorobenzene	µg/L µg/L			0.5	<0.5 <0.5	<0.5 <0.5
n-butylbenzene 1.2 dibromo 3. chloropropape	µg/L			0.5	<0.5	<0.5
1,2,4+richlorobenzene	µg/L µg/L			0.5	<0.5	<0.5
1,2,3-trichlorobenzene	µg/L µg/L			0.5	<0.5	<0.5 <0.5
Total VOC	µg/L			10	<10	<10
TRH in Groundwater Benzene (F0)	µg/L			0.5	<0.5	<0.5
TRH C6-C10 TRH C6-C10 minus BTEX (E1)	µg/L		1	50 50	<50	<50 <50
TRH > C10-C16 (F2)	μg/L		1	60	<60	<60
TRH >C34-C40 (F4)	µg/L µg/L			500 500	<500 <500	<500 <500
PAH in Groundwater						
Naphthalene2-methylnaphthalene	μg/L μg/L	16	NL	0.02	0.05 0.01	0.02 <0.01
1-methylnaphthalene Acenaphthylene	µg/L µa/I			0.01	<0.01 <0.01	<0.01 <0.01
Acenaphthene	µg/L			0.01	<0.01	<0.01
Phenanthrene	µg/L µg/L	2		0.01	0.01	<0.01
Anthracene Fluoranthene	μg/L μg/L			0.01 0.01	<0.01 <0.01	<0.01 <0.01
Pyrene Benzo(a)anthracene	µg/L µg/L			0.01	<0.0 <u>1</u> <0.01	<0.01 <0.01
Chrysene Benzo(b&j&k)fluoranthene	μg/L μg/L			0.01	<0.01 <0.02	<0.01 <0.02
Benzo(a)pyrene	μg/L			0.01	<0.01	<0.01
Dibenzo(ah) anthracene	μg/L			0.01	<0.01	<0.01
penzo(gni)peryiene Carcinogenic PAHs (as BaP TEQ) - assume non detects = 0	µg/L TEQ			0.01 0.012	<0.01 <0.012	<0.01 <0.012
Total PAH VIC EPA Guidelines (16) Total PAH (18)	μg/L μg/L			0.1	<0. 1 <0. 1	<0. 1 <0. 1
Metals in Groundwater (Dissolved)						
Arsenic, As	µg/L	13		1	19	<1
Chromium, Cr	μg/L	3.3		1	2	<1
Copper, Cu Lead, Pb	µg/L µg/L	3.4		1 1	370	88 <1
Nickel, Ni Zinc, Zn	µg/L µg/L	11 8		1 5	240 2100	19 110
Mercury	mg/L	0.00006		0.0001	<0.0001	<0.0001

Table LR3Laboratory Analytical Results - % RPD

		Sample Name	SE164358.001	SE164358.011		SE164358.012	
		Description	BH01/0.1-0.3	DUP01		DUP01A	
		Sample Date	18-4-2017	18-4-2017	% RPD	18-4-2017	% RPD
		Matrix	Soil	Soil		Soil	
Analyte Name	Units	Reporting Limit	Result	Result		Result	
Metals in Soil							
Arsenic, As	mg/kg	3	6	<3	#VALUE!	<3	#VALUE!
Cadmium, Cd	mg/kg	0.3	0.3	<0.3	#VALUE!	<0.3	#VALUE!
Chromium, Cr	mg/kg	0.3	30	6.1	132	10	100
Copper, Cu	mg/kg	0.5	0.7	0.6	15	0.7	0
Lead, Pb	mg/kg	1	20	16	22	16	22
Nickel, Ni	mg/kg	0.5	<0.5	<0.5	#VALUE!	<0.5	#VALUE!
Zinc, Zn	mg/kg	0.5	3.3	0.6	138	1.1	100
Mercury	mg/kg	0.05	<0.05	<0.05	#VALUE!	<0.05	#VALUE!

Appendix A Report Number 610.17035-R02 Page 1 of 1 LOGS

S			S	ER C	onsulti	ng Pty Ltd		BORE	HO	LE NUMBER BH01 PAGE 1 OF 1
CL PR		r <u>Ku-rii</u> CT NUN	ng-gai IBER	Cour 610	ncil .17035	.00000	PROJECT NAME _ PROJECT LOCATI	176 Mona Vale ON	Road	, NSW
	те с		1 0	14/17						
					BGI		R.L. SURFACE		I	DATUMI
FO			Dando	Terr	ier		HOLE LOCATION			
но)mm							
	TES									
Method	Water	Well Details	Depth (m)	Graphic Log	Classification Symbol	Material Description		Sample ID Remarks	PID (ppm)	Additional Observations
SFA			_	/////		ASPHALT/ROAD BASE.		BH01	-	Nil adaur an ataining
ΒD		2 2				CLAY: red with grey mottles, moist, stiff, bec	oming hard with depth.	0.1m - 0.3m, PID =		Nil odour or staining. DUP01/DUP01A
		\mathbb{X}	-			Becoming grev with red mottles.		0.7ppm		Trace tree root.
			1							
ЗFА			 							
) ()				Becoming weathered clay/shale, dry and hard	l.			
			_							
			2							
			_							
			_			Recoming grow to dark grow				Add water to borehole to facilitate SFA drilling.
			_			becoming grey to dark grey.				
			3							
			_							
			_							
			4							Adding water.
			-							
			_							
			_							
			5							
			_							
			_							
			6							
			_							
			-							
			7							
			_							
			-							
			8							
			4							Adding water.
			-							
			-							
			9		1	Collapse.		L		
			_			BHU1 terminated at 9m bgl.				I arget depth.
			_							
			10							

S			S	SLR C	onsulti	ing Pty Ltd		BORE	HO	LE NUMBER BH02 PAGE 1 OF 1
CL PR	IEN1 OJE	Γ <u>Ku-ri</u>	ng-gai IBER	<u>Cour</u> _610	ncil .17035	5.00000	PROJECT NAME	176 Mona Vale	Road	, NSW
DA	TES	STARTE	D _18	8/4/17		COMPLETED 18/4/17	R.L. SURFACE			
DR	ILLI	NG CON	ITRAC	TOR	BG	Drilling				
EQ		MENT _	Dando 0mm	o Terr	ier		HOLE LOCATION			
NC	TES)	onnin							
Method	Water	Well Details	Depth (m)	Graphic Log	Classification Symbol	Material Description		Sample ID Remarks	PID (ppm)	Additional Observations
РТФТ			_			FILL: Gravelly CLAY, brown, moist, soft, son	ne fine to medium sand,	BH02		Nil odour or staining.
			-			yellow. CLAY: grey, hard, moist, ironstone gravels a	nd banding.	0.15m - 0.35m, PID = 0.3ppm		Nil odour or staining.
			1					BH02 0.5m - 0.7m, PID =		
SFA			_			Becoming red.		0.2ppm		
			_							
		· · · ·	2							
			_							Add water for drilling.
			_			Becoming grey/dark grey.				
			3							
			_							
			-							
			4							
			_							
			_							
			5							
			-							
			_							
			6							
			-							
			_							
			7							
			-							
			_							
			8							
			-							
			-							
			9			BH02 terminated at 9m bgl.				Target depth.
			-							
			10							

S	enviror		Jutions	SLR	Consulting Pty Ltd		BORE	HO	LE NUMBER BH03 PAGE 1 OF 1
CL PR	IEN1 OJE	T <u>Ku</u> CT NU	-ring-ç JMBE	gai Cou R _61	uncil 0.17035.00000	PROJECT NAME _	176 Mona Vale ON	Road,	NSW
DA DR EQ	TE S ILLI UIPI	START NG CC MENT	ED _ DNTR	18/4/1 ACTOF ndo Te	7 COMPLETED <u>18/4/17</u> R BG Drilling rrier	R.L. SURFACE		[DATUM
HC		SIZE _	80mr	n		LOGGED BY CAC		(CHECKED BY NDS
Method	Water	Depth (m)	Graphic Log	Classification Symbol	Material Description		Sample ID Remarks	PID (ppm)	Additional Observations
SFA					ASPHALT/ROADBASE				
Id		0.5			FILL: Gravelly CLAY, brown, firm, moist.	st, stiff.	BH03 0.3m - 0.5m, PID = 0.0ppm BH03 0.6m - 0.8m, PID = 0.0ppm		Nil odour or staining.
					BH03 terminated at 1m bgl.				

S	enviror		Jutions	SLR	Consulting Pty Ltd		BORE	HO	LE NUMBER BH04 PAGE 1 OF 1
CL PR	IEN1 OJE	T <u>Ku</u>	-ring- <u>(</u> JMBE	gai Cou R _ <u>61</u>	uncil 0.17035.00000	PROJECT NAME _	176 Mona Vale	Road	, NSW
DA DR EQ	TE S ILLI UIPI	START NG CC MENT	ED _ DNTR	<u>18/4/1</u> ACTOI ndo Te	7 COMPLETED <u>18/4/17</u> R BG Drilling rrier	R.L. SURFACE		I	DATUM
HO	LES	SIZE _	80mr	n		LOGGED BY CAC		(CHECKED BY NDS
Method	Water	Depth (m)	Graphic Log	Classification Symbol	Material Description		Sample ID Remarks	PID (ppm)	Additional Observations
SFA		_			ASPHALT/ROADBASE				
Id		0 <u>.5</u> 			FILL: Gravelly CLAY, brown, firm, moist.		BH04 0.4m - 0.6m, PID = 0.1ppm BH04 0.6m - 0.8m, PID = 0.1ppm		Nil odour or staining. Nil odour or staining.
					BH04 terminated at 1m bgl.				Target depth.

S	enviror		i tions	SLR	Consulting Pty Ltd		BORE	HO	LE NUMBER BH05 PAGE 1 OF 1
CL PR	IEN1 OJE	Γ <u>Ku</u> CT ΝΙ	<u>-ring-c</u> JMBE	g <u>ai Cou</u> R _ 61	uncil 0.17035.00000	PROJECT NAME _ PROJECT LOCATIO	176 Mona Vale ON	Road	, NSW
DA DR EQ HC	TE \$ ILLI UIPI	START NG CO MENT SIZE <u>-</u>	ED _ DNTR	<u>18/4/1</u> ACTOI ndo Te n	7 COMPLETED 18/4/17 R BG Drilling rrier	R.L. SURFACE HOLE LOCATION LOGGED BY		[DATUM
NC	TES	;					I		
Method	Water	Depth (m)	Graphic Log	Classification Symbol	Material Description		Sample ID Remarks	PID (ppm)	Additional Observations
SFA					ASPHALT/ROADBASE				
μ		- 0.5 - - -			CLAY: grey with red mottles, moist, stiff.		BH05 0.2m - 0.4m, PID = 0.3ppm		Nil odour or staining.
					BH05 terminated at 1m bgl.				Target depth.

glo	5L bal enviro		tions	SLR	Consulting Pty Ltd		BOREI	HO	LE NUMBER BH06 PAGE 1 OF 1
C P	LIEN ROJE	T <u>Ku-</u> ECT NU	ring-g	<u>ai Cou</u> R _61	uncil 0.17035.00000	PROJECT NAME _	176 Mona Vale DN	Road,	NSW
D D E	ATE RILL QUIP	START ING CC MENT	ED	<u>18/4/1</u> ACTOF	7 COMPLETED <u>18/4/17</u> R BG Drilling rrier	R.L. SURFACE		[
H N		SIZE _ S	80mn	n		LOGGED BY CAC		`	
Method	Water	Depth (m)	Graphic Log	Classification Symbol	Material Description		Sample ID Remarks	PID (ppm)	Additional Observations
OREHOLE / TEST PIT 610.17035.00000 BORE LOGS.GPJ TRAINING_LIANE.GDT 1/5/17					ASPHALT/ROADBASE FILL: CLAY, brown, dry, hard, with some igneous gra CLAY: grey with orange/brown mottles and ironstone BH06 terminated at 1m bgl.	vels.	BH06 0.3m - 0.5m, PID = 0.3ppm 0.0ppm		Nil odour or staining.

Appendix B Report Number 610.17035-R02 Page 1 of 1 **GROUNDWATER MONITORING EVENT – FIELD FORMS**

SLR

Groundwater Monitoring Event - Water Quality Parameters

				STICK UP (mm)	ITAKE DEPTH WELL HEADSPACE 18TOC) PID (ppm)		COMMENTS (colour, sediment, odour, sheen, NAPL thickness)	X N. (adam shor.		X 1, 1				ered: Yes I No
	10.17035.00001	AC	AC	DEPTH (mBTOC) 8.5	PUMP IN p Install (ת	<u></u>	Turbid Cloudy Cloudy Cloudy Cloudy Cloudy Cloudy Cloudy							Metals Sample Field Filt
	ECT NUMBER: 6	CT MANAGER: C	FIELD STAFF: C	MELL	WATER (mBTOC) After Pum	4.245	TEMPERATURE (°C)		5.02	20.6				T
	PROJ	PROJE	PROJECT	E E	DEPTH TO	44	REDOX POTENTIAL (mV)	<u>+10%</u> -1な <i>&</i>	222	254			 2	20
			resultante est	ř.	Bef		pH (pH units)	4.16 4.16	4-4	4.72				DUP
				20mm	(titck applicable) MICRO-PURGE □	PERISTALTIC	ELECTRICAL CONDUCTIVITY (circle one)	<u>+</u> 3%	5.08	5.08				i ripiicate sample ID:
	te Investigatior	ad, St Ives)	38mm		S/S)	DISSOLVED	1. A	1.15	92.1	PUE			
	<u>age 2 Detailed Si</u>	6 Mona Vale Ro	4 04 2017	ETER (tick one):	SAMPLIN	BAILER (BAILER (TEFL	DEPTH TO WATER (m BTOC)	10-2-1	4.907	5.25	J.			<u>50</u>
	NAME: Sti	DRESS: 17	DATE: 21	DIAM	stiel number)) S 6 4 ^C	<u> ج</u> مع	(L)		1.5	.8	-			DUP
	PROJECT	CT SITE ADI		10MM	DIFLIMINT (SK	21-12	PUMP RATE (L/min)		0.7	5,0				Sample ID:
])	• •	PROJE	PROJECT	METT ID	FIELD E(WQM ID: 9		TIME (hh:mm)		2220	5520		V V4 60		Duplicate (

Electronic version in QMS Folder is controlled. Printed copies are uncontrolled Printed/Viewed 19/4/17 12:07 PM Page 1 of 1

.

16 April 2013 600.09500.65.007 Groundwater Monitoring Event - Water Quality Parameters.docx

ş

SLR

Groundwater Monitoring Event - Water Quality Parameters

0.17035.00001			EPTH (mBTOC) 名・子の STICK UP (mm)		Instail (mBTOC) PID (ppm)		55	TURBIDITY (tick one)	Coloudy Cloudy Cloudy Cloudy Turbid Turbid		X Grey, ind odon/steen						Aetals Sample Field Filtered: Yes G No	
ECT NUMBER: 61	T MANAGER: CA	FIELD STAFF: CA	MELL D	VATER (mBTOC)	After Pump		2.68		TEMPERATURE (°C)	<u>+10%</u>	21.3	21.8	21.8		- -		Æ	
PROJE	PROJEC	PROJECT		DEPTH TO V	ore Pump Install		170 10		REDOX POTENTIAL (mV)	<u>+</u> 10%	195	207.	214					
	1983 - P.		7		Befo	\	2.5		рН (pH units)	1:01	4.68	4.68	4.75				DUP	
C			D 50mm	T (tick applicable)	MICRO-PURGE		WATERRA	ELECTRICAL	CONDUCTIVITY	+3%	241125	2.36m5	2.29				Triplicate Sample ID:	
ite Investigatio	ad, St lves		38mm	G EQUIPMEN		(s/s)	LON)		DISSOLVED OXYGEN (mg/t)	<u>±10%</u>	26.0	ø.58`	0:51)				
ige 2 Detailed S	<u>ð Mona Vale Ro</u>	F1 40 F	ETER (tick one):	SAMPLIN	- BAILER (BAILER	BAILER (TEF		DEPTH TO WATER (m BTOC)	riteria 🖉 🖉	2.8.25	2 055	3.255	MPCU		******		
- NAME: Sta	DRESS: 170	K DATE: 2	DIAME	erial number)	DS 1649	-63-			VOLUME	Acceptance C	Ň	80 	00 -	√			 dna	
PROJECT	CT SITE AD	IELD WOR	7007		Openus	221705			PUMP RATE (L/min)	Stabilisation	0. S	<u>с</u> .0	5.0				ample ID:	
	PROJE	PROJECT F	METT ID	FIELD EC	Wam ID: 7	G M	- In Dig		TIME (hh:mm)	Well Purge &	0825	2490	0840				Duplicate S	

16 April 2013 600.09500.65.007 Groundwater Monitoring Event - Water Quality Parameters.docx

Electronic version in QMS Folder is controlled. Printed copies are uncontrolled Printed/Viewed 19/4/17 12:07 PM Page 1 of 1

Appendix C Report Number 610.17035-R02 Page 1 of 1 LABORATORY

ANALYTICAL REPORT

- CLIENT DETAILS		LABORATORY DE	TAILS	
Contact	Craig Cowper	Manager	Huong Crawford	
Client	SLR CONSULTING AUSTRALIA PTY LTD	Laboratory	SGS Alexandria Environmental	
Address	Lego Building, 2 Lincoln Street (PO Box 176 NSW LANECOVE 1595) LANECOVE NSW 2066	Address	Unit 16, 33 Maddox St Alexandria NSW 2015	
Telephone	02 9427 8100	Telephone	+61 2 8594 0400	
Facsimile	02 9427 8200	Facsimile	+61 2 8594 0499	
Email	ccowper@slrconsulting.com	Email	au.environmental.sydney@sgs.com	
Project	610.17038 St Ives	SGS Reference	SE164358 R0	
Order Number	22498	Date Received	19/4/2017	
Samples	15	Date Reported	27/4/2017	

COMMENTS

Accredited for compliance with ISO/IEC 17025-Testing. NATA accredited laboratory 2562(4354).

No respirable fibres detected in all soil samples using trace analysis technique.

Asbestos analysed by Approved Identifier Ravee Sivasubramaniam.

SIGNATORIES -

Ady Sith

Andy Sutton Senior Organic Chemist

Kamrul Ahsan Senior Chemist

Bennet Lo Senior Organic Chemist/Metals Chemist

kmln

Ly Kim Ha Organic Section Head

Dong Liang Metals/Inorganics Team Leader

S. Ravender.

Ravee Sivasubramaniam Hygiene Team Leader

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

SE164358 R0

VOC's in Soil [AN433] Tested: 21/4/2017

			BH01/0.1-0.3	BH02/0.15-0.35	BH03/0.3-0.5	BH04/0.4-0.6	BH04/0.6-0.8
			SOIL	SOIL	SOIL	SOIL	SOIL
DADAMETED	ЦОМ		18/4/2017	18/4/2017	18/4/2017	18/4/2017	18/4/2017
Benzene	ma/ka	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes*	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorodifluoromethane (CFC-12)	mg/kg	1	-	<1	-	<1	-
Chloromethane	mg/kg	1	-	<1	-	<1	-
Vinyl chloride (Chloroethene)	mg/kg	0.1	-	<0.1	-	<0.1	-
Bromomethane	mg/kg	1	-	<1	-	<1	-
Chloroethane	mg/kg	1	-	<1	-	<1	-
Trichlorofluoromethane	mg/kg	1	-	<1	-	<1	-
Acetone (2-propanone)	mg/kg	10	-	<10	-	<10	-
lodomethane	mg/kg	5	-	<5	-	<5	-
1,1-dichloroethene	mg/kg	0.1	-	<0.1	-	<0.1	-
Acrylonitrile	mg/kg	0.1	-	<0.1	-	<0.1	-
Dichloromethane (Methylene chloride)	mg/kg	0.5	-	<0.5	-	<0.5	-
Allyl chloride	mg/kg	0.1	-	<0.1	-	<0.1	-
Carbon disulfide	mg/kg	0.5	-	<0.5	-	<0.5	-
trans-1,2-dichloroethene	mg/kg	0.1	-	<0.1	-	<0.1	-
MtBE (Methyl-tert-butyl ether)	mg/kg	0.1	-	<0.1	-	<0.1	-
1,1-dichloroethane	mg/kg	0.1	-	<0.1	-	<0.1	-
Vinyl acetate	mg/kg	10	-	<10	-	<10	-
MEK (2-butanone)	mg/kg	10	-	<10	-	<10	-
cis-1,2-dichloroethene	mg/kg	0.1	-	<0.1	-	<0.1	-
Bromochloromethane	mg/kg	0.1	-	<0.1	-	<0.1	-
Chloroform	mg/kg	0.1	-	<0.1	-	<0.1	-
2,2-dichloropropane	mg/kg	0.1	-	<0.1	-	<0.1	-
1,2-dichloroethane	mg/kg	0.1	-	<0.1	-	<0.1	-
1,1,1-trichloroethane	mg/kg	0.1	-	<0.1	-	<0.1	-
1,1-dichloropropene	mg/kg	0.1	-	<0.1	-	<0.1	-
Carbon tetrachloride	mg/kg	0.1	-	<0.1	-	<0.1	-
Dibromomethane	mg/kg	0.1	-	<0.1	-	<0.1	-
1,2-dichloropropane	mg/kg	0.1	-	<0.1	-	<0.1	-
Trichloroethene (Trichloroethylene -TCE)	mg/kg	0.1	-	<0.1	-	<0.1	-
2-nitropropane	mg/kg	10	-	<10	-	<10	-
Bromodichloromethane	mg/kg	0.1	-	<0.1	-	<0.1	-
MIBK (4-methyl-2-pentanone)	mg/kg	1	-	<1	-	<1	-
cis-1,3-dichloropropene	mg/kg	0.1	-	<0.1	-	<0.1	-
trans-1,3-dichloropropene	mg/kg	0.1	-	<0.1	-	<0.1	-
1,1,2-trichloroethane	mg/kg	0.1	-	<0.1	-	<0.1	-
1,3-dichloropropane	mg/kg	0.1	-	<0.1	-	<0.1	-
	mg/kg	0.1	-	<0.1	-	<0.1	-
2-nexanone (MBK)	mg/kg	5	-	<5	-	<5	-
	mg/kg	0.1	-	<u.1< td=""><td>-</td><td></td><td>-</td></u.1<>	-		-
	mg/kg	0.1	-	<0.1	-	<0.1	-
	mg/kg	0.1	-	<u.1< td=""><td>-</td><td>×0.1</td><td>-</td></u.1<>	-	×0.1	-
Childrobenzene	mg/kg	0.1	-	<0.1	-	<0.1	-
cie 1.4 dichlere 2 hutere	mg/Kg	U.1	-	×0.1	-	~U.1	-
Styrene (Vinvi benzene)	mg/kg	0.1	-	<0.1	-	<0.1	-
1 1 2 2 tetrachloroethane	mg/kg	0.1	-	<0.1	-	-0.1	-
1, 1, 2,2-teu demorane	mg/kg	0.1	-	<0.1	-	-0.1	-
r,z,s-uruniotoproparie	mg/Kg	U.1	-	×0.1	-	~U.1	-
u ans- 1,4-uichioro-2-butene	під/кд	Т	-	<1	-	<1	-

SE164358 R0

VOC's in Soil [AN433] Tested: 21/4/2017 (continued)

			BH01/0.1-0.3	BH02/0.15-0.35	BH03/0.3-0.5	BH04/0.4-0.6	BH04/0.6-0.8
			201	201	201	201	201
			- 5012	- 50L	- 5012	- 501L	- 5012
			18/4/2017	18/4/2017	18/4/2017	18/4/2017	18/4/2017
PARAMETER	UOM	LOR	SE164358.001	SE164358.002	SE164358.004	SE164358.006	SE164358.007
Isopropylbenzene (Cumene)	mg/kg	0.1	-	<0.1	-	<0.1	-
Bromobenzene	mg/kg	0.1	-	<0.1	-	<0.1	-
n-propylbenzene	mg/kg	0.1	-	<0.1	-	<0.1	-
2-chlorotoluene	mg/kg	0.1	-	<0.1	-	<0.1	-
4-chlorotoluene	mg/kg	0.1	-	<0.1	-	<0.1	-
1,3,5-trimethylbenzene	mg/kg	0.1	-	<0.1	-	<0.1	-
tert-butylbenzene	mg/kg	0.1	-	<0.1	-	<0.1	-
1,2,4-trimethylbenzene	mg/kg	0.1	-	<0.1	-	<0.1	-
sec-butylbenzene	mg/kg	0.1	-	<0.1	-	<0.1	-
1,3-dichlorobenzene	mg/kg	0.1	-	<0.1	-	<0.1	-
1,4-dichlorobenzene	mg/kg	0.1	-	<0.1	-	<0.1	-
p-isopropyltoluene	mg/kg	0.1	-	<0.1	-	<0.1	-
1,2-dichlorobenzene	mg/kg	0.1	-	<0.1	-	<0.1	-
n-butylbenzene	mg/kg	0.1	-	<0.1	-	<0.1	-
1,2-dibromo-3-chloropropane	mg/kg	0.1	-	<0.1	-	<0.1	-
1,2,4-trichlorobenzene	mg/kg	0.1	-	<0.1	-	<0.1	-
Hexachlorobutadiene	mg/kg	0.1	-	<0.1	-	<0.1	-
1,2,3-trichlorobenzene	mg/kg	0.1	-	<0.1	-	<0.1	-
Total VOC*	mg/kg	24	-	<24	-	<24	-
Total Volatile Chlorinated Hydrocarbons*	mg/kg	3	-	<3.0	-	<3.0	-
Total Chlorinated Hydrocarbons VIC EPA*	mg/kg	1.8	-	<1.8	-	<1.8	-
Total Other Chlorinated Hydrocarbons VIC EPA*	mg/kg	1.8	-	<1.8	-	<1.8	-

SE164358 R0

VOC's in Soil [AN433] Tested: 21/4/2017 (continued)

			BH05/0.2-0.4	BH06/0.3-0.5
			2011	2011
			-	-
		1.05	18/4/2017	18/4/2017
PARAMETER	ma/ka	0 1	SE164358.008	SE164358.009
Toluene	ma/ka	0.1	<0.1	<0.1
Ethylbenzene	ma/ka	0.1	<0.1	<0.1
m/p-xvlene	ma/ka	0.2	<0.2	0.2
o-xvlene	ma/ka	0.1	<0.1	<0.1
Total Xvlenes*	ma/ka	0.3	<0.3	<0.3
Total BTEX	ma/ka	0.6	<0.6	<0.6
Naphthalene	ma/ka	0.1	<0.1	<0.1
Dichlorodifluoromethane (CFC-12)	mg/kg	1		-
Chloromethane	mg/kg	1	_	_
Vinyl chloride (Chloroethene)	mg/kg	0.1	-	-
Bromomethane	mg/kg	1	-	-
Chloroethane	mg/kg	1	-	-
Trichlorofluoromethane	mg/kg	1	-	-
Acetone (2-propanone)	mg/kg	10	-	-
lodomethane	mg/kg	5	-	-
1,1-dichloroethene	mg/kg	0.1	-	-
Acrylonitrile	mg/kg	0.1	-	-
Dichloromethane (Methylene chloride)	mg/kg	0.5	-	-
Allyl chloride	mg/kg	0.1	-	-
Carbon disulfide	mg/kg	0.5	-	-
trans-1,2-dichloroethene	mg/kg	0.1	-	-
MtBE (Methyl-tert-butyl ether)	mg/kg	0.1	-	-
1,1-dichloroethane	mg/kg	0.1	-	-
Vinyl acetate	mg/kg	10	-	-
MEK (2-butanone)	mg/kg	10	-	-
cis-1,2-dichloroethene	mg/kg	0.1	-	-
Bromochloromethane	mg/kg	0.1	-	-
Chloroform	mg/kg	0.1	-	-
2,2-dichloropropane	mg/kg	0.1	-	-
1,2-dichloroethane	mg/kg	0.1	-	-
1,1,1-trichloroethane	mg/kg	0.1	-	-
1,1-dichloropropene	mg/kg	0.1	-	-
Carbon tetrachloride	mg/kg	0.1	-	-
Dibromomethane	mg/kg	0.1	-	-
1,2-dichloropropane	mg/kg	0.1	-	-
Trichloroethene (Trichloroethylene -TCE)	mg/kg	0.1	-	-
2-nitropropane	mg/kg	10	-	-
Bromodichloromethane	mg/kg	0.1	-	-
MIBK (4-methyl-2-pentanone)	mg/kg	1	-	-
cis-1,3-dichloropropene	mg/kg	0.1	-	-
trans-1,3-dichloropropene	mg/kg	0.1	-	-
1,1,2-trichloroethane	mg/kg	0.1	-	-
1,3-dichloropropane	mg/kg	0.1	-	-
Chlorodibromomethane	mg/kg	0.1	-	-
2-hexanone (MBK)	mg/kg	5	-	-
1,2-dibromoethane (EDB)	mg/kg	0.1	-	-
Tetrachloroethene (Perchloroethylene,PCE)	mg/kg	0.1	-	-
1,1,1,2-tetrachloroethane	mg/kg	0.1	-	-
Chlorobenzene	mg/kg	0.1	-	-
Bromoform	mg/kg	0.1	-	-
cis-1,4-dichloro-2-butene	mg/kg	1	-	-
Styrene (Vinyl benzene)	mg/kg	0.1	-	-
1,1,2,2-tetrachloroethane	mg/kg	0.1	-	-
1,2,3-trichloropropane	mg/kg	0.1	-	-
trans-1,4-dichloro-2-butene	mg/kg	1	-	-

VOC's in Soil [AN433] Tested: 21/4/2017 (continued)

			BH05/0.2-0.4	BH06/0.3-0.5
			SOIL	SOIL
			- 18/4/2017	- 18/4/2017
PARAMETER	UOM	LOR	SE164358.008	SE164358.009
Isopropylbenzene (Cumene)	mg/kg	0.1	-	-
Bromobenzene	mg/kg	0.1	-	-
n-propylbenzene	mg/kg	0.1	-	-
2-chlorotoluene	mg/kg	0.1	-	-
4-chlorotoluene	mg/kg	0.1	-	-
1,3,5-trimethylbenzene	mg/kg	0.1	-	-
tert-butylbenzene	mg/kg	0.1	-	-
1,2,4-trimethylbenzene	mg/kg	0.1	-	-
sec-butylbenzene	mg/kg	0.1	-	-
1,3-dichlorobenzene	mg/kg	0.1	-	-
1,4-dichlorobenzene	mg/kg	0.1	-	-
p-isopropyltoluene	mg/kg	0.1	-	-
1,2-dichlorobenzene	mg/kg	0.1	-	-
n-butylbenzene	mg/kg	0.1	-	-
1,2-dibromo-3-chloropropane	mg/kg	0.1	-	-
1,2,4-trichlorobenzene	mg/kg	0.1	-	-
Hexachlorobutadiene	mg/kg	0.1	-	-
1,2,3-trichlorobenzene	mg/kg	0.1	-	-
Total VOC*	mg/kg	24	-	-
Total Volatile Chlorinated Hydrocarbons*	mg/kg	3	-	-
Total Chlorinated Hydrocarbons VIC EPA*	mg/kg	1.8	-	-
Total Other Chlorinated Hydrocarbons VIC EPA*	mg/kg	1.8	-	-

SE164358 R0

Volatile Petroleum Hydrocarbons in Soil [AN433] Tested: 21/4/2017

			BH01/0.1-0.3	BH02/0.15-0.35	BH03/0.3-0.5	BH04/0.4-0.6	BH04/0.6-0.8
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 18/4/2017	- 18/4/2017	- 18/4/2017	- 18/4/2017	- 18/4/2017
PARAMETER	UOM	LOR	SE164358.001	SE164358.002	SE164358.004	SE164358.006	SE164358.007
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			BH05/0.2-0.4	BH06/0.3-0.5
			SOIL	SOIL
			18/4/2017	18/4/2017
PARAMETER	UOM	LOR	SE164358.008	SE164358.009
TRH C6-C9	mg/kg	20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25

TRH (Total Recoverable Hydrocarbons) in Soil [AN403]

100100. 20/4/2011

			BH01/0.1-0.3	BH02/0.15-0.35	BH03/0.3-0.5	BH04/0.4-0.6	BH04/0.6-0.8
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
			18/4/2017	18/4/2017	18/4/2017	18/4/2017	18/4/2017
PARAMETER	UOM	LOR	SE164358.001	SE164358.002	SE164358.004	SE164358.006	SE164358.007
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16 (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110	<110
TRH C10-C40 Total	mg/kg	210	<210	<210	<210	<210	<210

			BH05/0.2-0.4	BH06/0.3-0.5
PARAMETER	UOM	LOR	SOIL - 18/4/2017 SE164358.008	SOIL - 18/4/2017 SE164358.009
TRH C10-C14	mg/kg	20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100
TRH >C10-C16 (F2)	mg/kg	25	<25	<25
TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110
TRH C10-C40 Total	mg/kg	210	<210	<210

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 20/4/2017

			BH01/0.1-0.3	BH02/0.15-0.35	BH03/0.3-0.5	BH04/0.4-0.6	BH04/0.6-0.8
			00"	00"	201	0.01	00"
			SOIL	SOIL	SOIL	SOIL	SUIL
			- 18/4/2017	18/4/2017	18/4/2017	18/4/2017	- 18/4/2017
PARAMETER	UOM	LOR	SE164358.001	SE164358.002	SE164358.004	SE164358.006	SE164358.007
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0<>	TEQ	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8

			BH05/0.2-0.4	BH06/0.3-0.5	BH06/0.7-0.9
			SOIL	SOIL	SOIL
			-	-	-
			18/4/2017	18/4/2017	18/4/2017
PARAMETER	UOM	LOR	SE164358.008	SE164358.009	SE164358.010
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0<>	TEQ	0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8	<0.8

OC Pesticides in Soil [AN420] Tested: 20/4/2017

			BH03/0.3-0.5	BH06/0.3-0.5
			201	201
			- 50IL	- 5012
			18/4/2017	18/4/2017
PARAMETER	UOM	LOR	SE164358.004	SE164358.009
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1

PCBs in Soil [AN420] Tested: 20/4/2017

			BH04/0.4-0.6	BH05/0.2-0.4
DADAMETED	ЦОМ		SOIL - 18/4/2017	SOIL - 18/4/2017
Arochior 1016	mg/kg	0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1

ANALYTICAL RESULTS

SE164358 R0

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 24/4/2017

			BH01/0.1-0.3	BH02/0.15-0.35	BH02/0.5-0.7	BH03/0.3-0.5	BH03/0.6-0.8
			SOIL	SOIL	SOIL	SOIL	SOIL
			18/4/2017	18/4/2017	18/4/2017	18/4/2017	18/4/2017
PARAMETER	UOM	LOR	SE164358.001	SE164358.002	SE164358.003	SE164358.004	SE164358.005
Arsenic, As	mg/kg	3	6	4	<3	3	<3
Cadmium, Cd	mg/kg	0.3	0.3	<0.3	<0.3	<0.3	0.5
Chromium, Cr	mg/kg	0.3	30	7.1	2.2	26	15
Copper, Cu	mg/kg	0.5	0.7	3.5	1.9	7.7	3.6
Lead, Pb	mg/kg	1	20	13	6	15	20
Nickel, Ni	mg/kg	0.5	<0.5	2.7	<0.5	20	<0.5
Zinc, Zn	mg/kg	0.5	3.3	8.1	<0.5	12	4.5

			BH04/0.4-0.6	BH05/0.2-0.4	BH06/0.3-0.5	BH06/0.7-0.9	DUP01
			SOIL	SOIL	SOIL	SOIL	SOIL
			18/4/2017	18/4/2017	18/4/2017	18/4/2017	18/4/2017
PARAMETER	UOM	LOR	SE164358.006	SE164358.008	SE164358.009	SE164358.010	SE164358.011
Arsenic, As	mg/kg	3	3	13	3	3	<3
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.3	19	14	37	7.6	6.1
Copper, Cu	mg/kg	0.5	35	1.5	21	3.0	0.6
Lead, Pb	mg/kg	1	11	19	11	15	16
Nickel, Ni	mg/kg	0.5	38	<0.5	34	<0.5	<0.5
Zinc, Zn	mg/kg	0.5	86	2.5	26	1.5	0.6

			DUP01A
			SOIL
			- 18/4/2017
PARAMETER	UOM	LOR	SE164358.012
Arsenic, As	mg/kg	3	<3
Cadmium, Cd	mg/kg	0.3	<0.3
Chromium, Cr	mg/kg	0.3	10
Copper, Cu	mg/kg	0.5	0.7
Lead, Pb	mg/kg	1	16
Nickel, Ni	mg/kg	0.5	<0.5
Zinc, Zn	mg/kg	0.5	1.1

SE164358 R0

Mercury in Soil [AN312] Tested: 21/4/2017

			BH01/0.1-0.3	BH02/0.15-0.35	BH02/0.5-0.7	BH03/0.3-0.5	BH03/0.6-0.8
			SOIL	SOIL	SOIL	SOIL	SOIL
			18/4/2017	18/4/2017	18/4/2017	18/4/2017	18/4/2017
PARAMETER	UOM	LOR	SE164358.001	SE164358.002	SE164358.003	SE164358.004	SE164358.005
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			BH04/0.4-0.6	BH05/0.2-0.4	BH06/0.3-0.5	BH06/0.7-0.9	DUP01
			SOIL	SOIL	SOIL	SOIL	SOIL
			18/4/2017	18/4/2017	18/4/2017	18/4/2017	18/4/2017
PARAMETER	UOM	LOR	SE164358.006	SE164358.008	SE164358.009	SE164358.010	SE164358.011
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			DUP01A
			SOIL
			18/4/2017
PARAMETER	UOM	LOR	SE164358.012
Mercury	mg/kg	0.05	<0.05

SE164358 R0

Moisture Content [AN002] Tested: 24/4/2017

			BH01/0.1-0.3	BH02/0.15-0.35	BH02/0.5-0.7	BH03/0.3-0.5	BH03/0.6-0.8
			SOIL	SOIL	SOIL	SOIL	SOIL
					OOIE	- COIE	COLE
			18/4/2017	18/4/2017	18/4/2017	18/4/2017	18/4/2017
PARAMETER	UOM	LOR	SE164358.001	SE164358.002	SE164358.003	SE164358.004	SE164358.005
% Moisture	%w/w	0.5	18	13	12	15	14

			BH04/0.4-0.6	BH04/0.6-0.8	BH05/0.2-0.4	BH06/0.3-0.5	BH06/0.7-0.9
			SOIL	SOIL	SOIL	SOIL	SOIL
			18/4/2017	18/4/2017	18/4/2017	18/4/2017	18/4/2017
PARAMETER	UOM	LOR	SE164358.006	SE164358.007	SE164358.008	SE164358.009	SE164358.010
% Moisture	%w/w	0.5	11	14	16	12	13

			DUP01	DUP01A
			SOIL	SOIL
			18/4/2017	18/4/2017
PARAMETER	UOM	LOR	SE164358.011	SE164358.012
% Moisture	%w/w	0.5	17	17

Fibre Identification in soil [AN602] Tested: 24/4/2017

			BH02/0.15-0.35	BH03/0.3-0.5	BH04/0.4-0.6	BH05/0.2-0.4	BH06/0.3-0.5
			SOIL	SOIL	SOIL	SOIL	SOIL
			18/4/2017	18/4/2017	18/4/2017	18/4/2017	18/4/2017
PARAMETER	UOM	LOR	SE164358.002	SE164358.004	SE164358.006	SE164358.008	SE164358.009
Asbestos Detected	No unit	-	No	No	No	No	No

ANALYTICAL RESULTS

VOCs in Water [AN433] Tested: 20/4/2017

			Trip Spike	Trip Blank
PARAMETER	UOM	LOR	WATER - 18/4/2017 SE164358.014	WATER - 18/4/2017 SE164358.015
Benzene	µg/L	0.5	[97%]	<0.5
Toluene	µg/L	0.5	[97%]	<0.5
Ethylbenzene	µg/L	0.5	[101%]	<0.5
m/p-xylene	µg/L	1	[106%]	<1
o-xylene	µg/L	0.5	[105%]	<0.5
Naphthalene	µg/L	0.5	-	<0.5
Total Xylenes	µg/L	1.5	-	<1.5
Total BTEX	µg/L	3	-	<3

ANALYTICAL RESULTS

Trace Metals (Dissolved) in Water by ICPMS [AN318] Tested: 20/4/2017

			RB01
			WATER
			- 18/4/2017
PARAMETER	UOM	LOR	SE164358.013
Arsenic, As	µg/L	1	<1
Cadmium, Cd	μg/L	0.1	<0.1
Copper, Cu	μg/L	1	<1
Chromium, Cr	μg/L	1	<1
Nickel, Ni	µg/L	1	<1
Lead, Pb	μg/L	1	<1
Zinc, Zn	µg/L	5	<5

Mercury (dissolved) in Water [AN311(Perth)/AN312] Tested: 26/4/2017

			RB01
			WATER
			18/4/2017
PARAMETER	UOM	LOR	SE164358.013
Mercury	mg/L	0.0001	<0.0001

METHOD	METHODOLOGY SUMMARY
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN020	Unpreserved water sample is filtered through a 0.45µm membrane filter and acidified with nitric acid similar to APHA3030B.
AN040/AN320	A portion of sample is digested with nitric acid to decompose organic matter and hydrochloric acid to complete the digestion of metals. The digest is then analysed by ICP OES with metals results reported on the dried sample basis. Based on USEPA method 200.8 and 6010C.
AN040	A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analysis by ASS or ICP as per USEPA Method 200.8.
AN311(Perth)/AN312	Mercury by Cold Vapour AAS in Waters: Mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500.
AN312	Mercury by Cold Vapour AAS in Soils: After digestion with nitric acid, hydrogen peroxide and hydrochloric acid, mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500
AN318	Determination of elements at trace level in waters by ICP-MS technique, in accordance with USEPA 6020A.
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). F2 is reported directly and also corrected by subtracting Naphthalene (from VOC method AN433) where available.
AN403	Additionally, the volatile C6-C9 fraction may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Petroleum Hydrocarbons (TPH) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.
AN403	The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.
AN420	(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN420	SVOC Compounds: Semi-Volatile Organic Compounds (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN433	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.
AN602	Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.
AN602	Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf).
AN602	AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples, Section 8.4, Trace Analysis Criteria, Note 4 states: "Depending upon sample condition and fibre type, the detection limit of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."

AN602	The sample can be reported "no asbestos found at the reporting limit of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if-
	 (a) no trace asbestos fibres have been detected (i.e. no 'respirable' fibres): (b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg: and (c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.

FOOTNOTES

*	NATA accreditation does not cover	-	Not analysed.	UOM	Unit of Measure.
	the performance of this service.	NVL	Not validated.	LOR	Limit of Reporting.
**	Indicative data, theoretical holding	IS	Insufficient sample for analysis.	↑↓	Raised/lowered Limit of
	time exceeded.	LNR	Sample listed, but not received.		Reporting.

Samples analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : <u>http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf</u>

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

ANALYTICAL REPORT

CLIENT DETAILS		LABORATORY DETAI	LS
Contact	Craig Cowper	Manager	Huong Crawford
Client	SLR CONSULTING AUSTRALIA PTY LTD	Laboratory	SGS Alexandria Environmental
Address	Lego Building, 2 Lincoln Street (PO Box 176 NSW LANECOVE 1595) LANECOVE NSW 2066	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	02 9427 8100	Telephone	+61 2 8594 0400
Facsimile	02 9427 8200	Facsimile	+61 2 8594 0499
Email	ccowper@slrconsulting.com	Email	au.environmental.sydney@sgs.com
Project	610.17038 St Ives	SGS Reference	SE164358 R0
Order Number	22498	Date Received	19 Apr 2017
Samples	5	Date Reported	27 Apr 2017

- COMMENTS -

Accredited for compliance with ISO/IEC 17025-Testing. NATA accredited laboratory 2562(4354).

No respirable fibres detected in all soil samples using trace analysis technique.

Asbestos analysed by Approved Identifier Ravee Sivasubramaniam.

SIGNATORIES -

Ady Sitte

Andy Sutton Senior Organic Chemist

Kamrul Ahsan Senior Chemist

Bennet Lo Senior Organic Chemist/Metals Chemis

kmln

Ly Kim Ha Organic Section Head

Dong Liang Metals/Inorganics Team Leader

S. Ravendr.

Ravee Sivasubramaniam Hygiene Team Leader

Australia

Australia

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 t +61 2 8594 0400 www.sgs.com.au f +61 2 8594 0499

Member of the SGS Group

ANALYTICAL REPORT

RESULTS -					
Fibre Identifica	tion in soil	Method AN602			
Laboratory Reference	Client Reference	Matrix	Sample Description	Date Sampled	Fibre Identification
SE164358.002	BH02/0.15-0.35	Soil	72g Clay	18 Apr 2017	No Asbestos Found
SE164358.004	BH03/0.3-0.5	Soil	69g Clay	18 Apr 2017	No Asbestos Found
SE164358.006	BH04/0.4-0.6	Soil	64g Clay	18 Apr 2017	No Asbestos Found
SE164358.008	BH05/0.2-0.4	Soil	63g Clay	18 Apr 2017	No Asbestos Found
SE164358.009	BH06/0.3-0.5	Soil		18 Apr 2017	No Asbestos Found

METHOD SUMMARY

METHOD	METHODOLOGY SUMMARY
AN602	Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.
AN602	Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf).
AN602	AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples, Section 8.4, Trace Analysis Criteria, Note 4 states: "Depending upon sample condition and fibre type, the detection limit of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."
AN602	The sample can be reported "no asbestos found at the reporting limit of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if-
	 (a) no trace asbestos fibres have been detected (i.e. no 'respirable' fibres): (b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg: and (c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.

FOOTNOTES

Amosite	-	Brown Asbestos	NA	-	Not Analysed
Chrysotile	-	White Asbestos	LNR	-	Listed, Not Required
Crocidolite	-	Blue Asbestos	*	-	NATA accreditation does not cover the performance of this service.
Amphiboles	-	Amosite and/or Crocidolite	**	-	Indicative data, theoretical holding time exceeded.

(In reference to soil samples only) This report does not comply with the analytical reporting recommendations in the Western Australian Department of Health Guidelines for the Assessment and Remediation and Management of Asbestos Contaminated sites in Western Australia - May 2009.

Sampled by the client.

Where reported: 'Asbestos Detected': Asbestos detected by polarised light microscopy, including dispersion staining. Where reported: 'No Asbestos Found': No Asbestos Found by polarised light microscopy, including dispersion staining. Where reported: 'UMF Detected': Mineral fibres of unknown type detected by polarised light microscopy, including dispersion staining. Confirmation by another independent analytical technique may be necessary.

Even after disintegration it can be very difficult, or impossible, to detect the presence of asbestos in some asbestos -containing bulk materials using polarised light microscopy. This is due to the low grade or small length or diameter of asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS		LABORATORY DETAIL	LS	
Contact	Craig Cowper	Manager	Huong Crawford	
Client	SLR CONSULTING AUSTRALIA PTY LTD	Laboratory	SGS Alexandria Environmental	
Address	Lego Building, 2 Lincoln Street (PO Box 176 NSW LANECOVE 1595) LANECOVE NSW 2066	Address	Unit 16, 33 Maddox St Alexandria NSW 2015	
Telephone	02 9427 8100	Telephone	+61 2 8594 0400	
Facsimile	02 9427 8200	Facsimile	+61 2 8594 0499	
Email	ccowper@slrconsulting.com	Email	au.environmental.sydney@sgs.com	
Project	610.17038 St lves	SGS Reference	SE164358 R0	
Order Number	22498	Date Received	19 Apr 2017	
Samples	15	Date Reported	27 Apr 2017	

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document and was supplied by the Client. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Matrix Spike

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES

1 item

SAMPLE SUMMARY	
----------------	--

				```````````````````````````````````````
Samples clearly labelled	Yes	Complete documentation received	Yes	
Sample container provider	SGS	Sample cooling method	Ice	
Samples received in correct containers	Yes	Sample counts by matrix	12 Soil, 3 Water	
Date documentation received	19/4/2017	Type of documentation received	COC	
Samples received in good order	Yes	Samples received without headspace	Yes	
Sample temperature upon receipt	4.0°C	Sufficient sample for analysis	Yes	
Turnaround time requested	Standard			

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St Alexandria NSW 2015 PO Box 6432 Bourke Rd BC Alexandria NSW 2015

NSW 2015 Australia NSW 2015 Australia t +61 2 8594 0400 f +61 2 8594 0499

94 0499 Member of the SGS Group

www.sgs.com.au



SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Fibre Identification in soil	re Identification in soil Method: ME-(AU)-[ENV]AN602										
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed			
BH02/0.15-0.35	SE164358.002	LB122819	18 Apr 2017	19 Apr 2017	18 Apr 2018	24 Apr 2017	18 Apr 2018	27 Apr 2017			
BH03/0.3-0.5	SE164358.004	LB122819	18 Apr 2017	19 Apr 2017	18 Apr 2018	24 Apr 2017	18 Apr 2018	27 Apr 2017			
BH04/0.4-0.6	SE164358.006	LB122819	18 Apr 2017	19 Apr 2017	18 Apr 2018	24 Apr 2017	18 Apr 2018	27 Apr 2017			
BH05/0.2-0.4	SE164358.008	LB122819	18 Apr 2017	19 Apr 2017	18 Apr 2018	24 Apr 2017	18 Apr 2018	27 Apr 2017			
BH06/0.3-0.5	SE164358.009	LB122819	18 Apr 2017	19 Apr 2017	18 Apr 2018	24 Apr 2017	18 Apr 2018	27 Apr 2017			
Mercury (dissolved) in Water							Method: ME-(AU)-[ENV	AN311(Perth)/AN312			
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed			
RB01	SE164358.013	LB122864	18 Apr 2017	19 Apr 2017	16 May 2017	26 Apr 2017	16 May 2017	26 Apr 2017			
Mercury in Soil							Method: I	ME-(AU)-[ENV]AN312			

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH01/0.1-0.3	SE164358.001	LB122741	18 Apr 2017	19 Apr 2017	16 May 2017	21 Apr 2017	16 May 2017	26 Apr 2017
BH02/0.15-0.35	SE164358.002	LB122741	18 Apr 2017	19 Apr 2017	16 May 2017	21 Apr 2017	16 May 2017	26 Apr 2017
BH02/0.5-0.7	SE164358.003	LB122741	18 Apr 2017	19 Apr 2017	16 May 2017	21 Apr 2017	16 May 2017	26 Apr 2017
BH03/0.3-0.5	SE164358.004	LB122741	18 Apr 2017	19 Apr 2017	16 May 2017	21 Apr 2017	16 May 2017	26 Apr 2017
BH03/0.6-0.8	SE164358.005	LB122741	18 Apr 2017	19 Apr 2017	16 May 2017	21 Apr 2017	16 May 2017	26 Apr 2017
BH04/0.4-0.6	SE164358.006	LB122741	18 Apr 2017	19 Apr 2017	16 May 2017	21 Apr 2017	16 May 2017	26 Apr 2017
BH05/0.2-0.4	SE164358.008	LB122741	18 Apr 2017	19 Apr 2017	16 May 2017	21 Apr 2017	16 May 2017	26 Apr 2017
BH06/0.3-0.5	SE164358.009	LB122741	18 Apr 2017	19 Apr 2017	16 May 2017	21 Apr 2017	16 May 2017	26 Apr 2017
BH06/0.7-0.9	SE164358.010	LB122741	18 Apr 2017	19 Apr 2017	16 May 2017	21 Apr 2017	16 May 2017	26 Apr 2017
DUP01	SE164358.011	LB122741	18 Apr 2017	19 Apr 2017	16 May 2017	21 Apr 2017	16 May 2017	26 Apr 2017
DUP01A	SE164358.012	LB122741	18 Apr 2017	19 Apr 2017	16 May 2017	21 Apr 2017	16 May 2017	26 Apr 2017

Moisture Content							Method: N	ME-(AU)-[ENV]AN002
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH01/0.1-0.3	SE164358.001	LB122790	18 Apr 2017	19 Apr 2017	02 May 2017	24 Apr 2017	29 Apr 2017	26 Apr 2017
BH02/0.15-0.35	SE164358.002	LB122790	18 Apr 2017	19 Apr 2017	02 May 2017	24 Apr 2017	29 Apr 2017	26 Apr 2017
BH02/0.5-0.7	SE164358.003	LB122790	18 Apr 2017	19 Apr 2017	02 May 2017	24 Apr 2017	29 Apr 2017	26 Apr 2017
BH03/0.3-0.5	SE164358.004	LB122790	18 Apr 2017	19 Apr 2017	02 May 2017	24 Apr 2017	29 Apr 2017	26 Apr 2017
BH03/0.6-0.8	SE164358.005	LB122790	18 Apr 2017	19 Apr 2017	02 May 2017	24 Apr 2017	29 Apr 2017	26 Apr 2017
BH04/0.4-0.6	SE164358.006	LB122790	18 Apr 2017	19 Apr 2017	02 May 2017	24 Apr 2017	29 Apr 2017	26 Apr 2017
BH04/0.6-0.8	SE164358.007	LB122790	18 Apr 2017	19 Apr 2017	02 May 2017	24 Apr 2017	29 Apr 2017	26 Apr 2017
BH05/0.2-0.4	SE164358.008	LB122790	18 Apr 2017	19 Apr 2017	02 May 2017	24 Apr 2017	29 Apr 2017	26 Apr 2017
BH06/0.3-0.5	SE164358.009	LB122790	18 Apr 2017	19 Apr 2017	02 May 2017	24 Apr 2017	29 Apr 2017	26 Apr 2017
BH06/0.7-0.9	SE164358.010	LB122790	18 Apr 2017	19 Apr 2017	02 May 2017	24 Apr 2017	29 Apr 2017	26 Apr 2017
DUP01	SE164358.011	LB122790	18 Apr 2017	19 Apr 2017	02 May 2017	24 Apr 2017	29 Apr 2017	26 Apr 2017
DUP01A	SE164358.012	LB122790	18 Apr 2017	19 Apr 2017	02 May 2017	24 Apr 2017	29 Apr 2017	26 Apr 2017

OC Pesticides in Soil

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH01/0.1-0.3	SE164358.001	LB122637	18 Apr 2017	19 Apr 2017	02 May 2017	20 Apr 2017	30 May 2017	26 Apr 2017
BH02/0.15-0.35	SE164358.002	LB122637	18 Apr 2017	19 Apr 2017	02 May 2017	20 Apr 2017	30 May 2017	26 Apr 2017
BH03/0.3-0.5	SE164358.004	LB122637	18 Apr 2017	19 Apr 2017	02 May 2017	20 Apr 2017	30 May 2017	26 Apr 2017
BH04/0.4-0.6	SE164358.006	LB122637	18 Apr 2017	19 Apr 2017	02 May 2017	20 Apr 2017	30 May 2017	26 Apr 2017
BH04/0.6-0.8	SE164358.007	LB122637	18 Apr 2017	19 Apr 2017	02 May 2017	20 Apr 2017	30 May 2017	26 Apr 2017
BH05/0.2-0.4	SE164358.008	LB122637	18 Apr 2017	19 Apr 2017	02 May 2017	20 Apr 2017	30 May 2017	26 Apr 2017
BH06/0.3-0.5	SE164358.009	LB122637	18 Apr 2017	19 Apr 2017	02 May 2017	20 Apr 2017	30 May 2017	26 Apr 2017
BH06/0.7-0.9	SE164358.010	LB122637	18 Apr 2017	19 Apr 2017	02 May 2017	20 Apr 2017	30 May 2017	26 Apr 2017

PAH (Polynuclear Aromatic	c Hydrocarbons) in Soil						Method: I	VIE-(AU)-[ENV]AN420
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH01/0.1-0.3	SE164358.001	LB122637	18 Apr 2017	19 Apr 2017	02 May 2017	20 Apr 2017	30 May 2017	26 Apr 2017
BH02/0.15-0.35	SE164358.002	LB122637	18 Apr 2017	19 Apr 2017	02 May 2017	20 Apr 2017	30 May 2017	26 Apr 2017
BH03/0.3-0.5	SE164358.004	LB122637	18 Apr 2017	19 Apr 2017	02 May 2017	20 Apr 2017	30 May 2017	26 Apr 2017
BH04/0.4-0.6	SE164358.006	LB122637	18 Apr 2017	19 Apr 2017	02 May 2017	20 Apr 2017	30 May 2017	26 Apr 2017
BH04/0.6-0.8	SE164358.007	LB122637	18 Apr 2017	19 Apr 2017	02 May 2017	20 Apr 2017	30 May 2017	26 Apr 2017
BH05/0.2-0.4	SE164358.008	LB122637	18 Apr 2017	19 Apr 2017	02 May 2017	20 Apr 2017	30 May 2017	26 Apr 2017
BH06/0.3-0.5	SE164358.009	LB122637	18 Apr 2017	19 Apr 2017	02 May 2017	20 Apr 2017	30 May 2017	26 Apr 2017
BH06/0.7-0.9	SE164358.010	LB122637	18 Apr 2017	19 Apr 2017	02 May 2017	20 Apr 2017	30 May 2017	26 Apr 2017

Method: ME-(AU)-IENVIAN420



SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

### PCBs in Soil Method: ME-(AU)-[ENV]AN420 Sample Name Sampled Analysis Due Analysed Sample No. QC Ref Received Extraction Due Extracted BH01/0.1-0.3 SE164358.001 LB122637 18 Apr 2017 19 Apr 2017 02 May 2017 20 Apr 2017 30 May 2017 26 Apr 2017 BH02/0.15-0.35 SE164358.002 LB122637 30 May 2017 26 Apr 2017 18 Apr 2017 19 Apr 2017 02 May 2017 20 Apr 2017 BH03/0.3-0.5 SE164358.004 LB122637 18 Apr 2017 19 Apr 2017 02 May 2017 20 Apr 2017 30 May 2017 26 Apr 2017 BH04/0.4-0.6 SE164358.006 LB122637 18 Apr 2017 19 Apr 2017 20 Apr 2017 30 May 2017 26 Apr 2017 02 May 2017 BH04/0.6-0.8 SE164358.007 LB122637 18 Apr 2017 19 Apr 2017 20 Apr 2017 30 May 2017 26 Apr 2017 02 May 2017 BH05/0.2-0.4 SE164358.008 LB122637 18 Apr 2017 19 Apr 2017 02 May 2017 20 Apr 2017 30 May 2017 26 Apr 2017 BH06/0.3-0.5 SE164358.009 LB122637 18 Apr 2017 30 May 2017 19 Apr 2017 02 May 2017 20 Apr 2017 26 Apr 2017 BH06/0.7-0.9 SE164358.010 LB122637 18 Apr 2017 19 Apr 2017 02 May 2017 20 Apr 2017 30 May 2017 26 Apr 2017 Method: ME-(AU)-[ENV]AN040/AN320

02 May 2017

02 May 2017

20 Apr 2017

30 May 2017

30 May 2017

26 Apr 2017

Method: ME-(AU)-IENVIAN433

Total Recoverable Metal	otal Recoverable Metals in Soli/Waste Solids/Materials by ICPOES Sample Name Sample No. OC Ref Sampled						
Sample Name	Sample No.	QC Ref	Sampled				

SE164358.009

SE16/358 010

LB122637

LB122637

18 Apr 2017

18 Apr 2017

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH01/0.1-0.3	SE164358.001	LB122772	18 Apr 2017	19 Apr 2017	15 Oct 2017	24 Apr 2017	15 Oct 2017	26 Apr 2017
BH02/0.15-0.35	SE164358.002	LB122772	18 Apr 2017	19 Apr 2017	15 Oct 2017	24 Apr 2017	15 Oct 2017	26 Apr 2017
BH02/0.5-0.7	SE164358.003	LB122772	18 Apr 2017	19 Apr 2017	15 Oct 2017	24 Apr 2017	15 Oct 2017	26 Apr 2017
BH03/0.3-0.5	SE164358.004	LB122772	18 Apr 2017	19 Apr 2017	15 Oct 2017	24 Apr 2017	15 Oct 2017	26 Apr 2017
BH03/0.6-0.8	SE164358.005	LB122772	18 Apr 2017	19 Apr 2017	15 Oct 2017	24 Apr 2017	15 Oct 2017	26 Apr 2017
BH04/0.4-0.6	SE164358.006	LB122772	18 Apr 2017	19 Apr 2017	15 Oct 2017	24 Apr 2017	15 Oct 2017	26 Apr 2017
BH05/0.2-0.4	SE164358.008	LB122772	18 Apr 2017	19 Apr 2017	15 Oct 2017	24 Apr 2017	15 Oct 2017	26 Apr 2017
BH06/0.3-0.5	SE164358.009	LB122772	18 Apr 2017	19 Apr 2017	15 Oct 2017	24 Apr 2017	15 Oct 2017	26 Apr 2017
BH06/0.7-0.9	SE164358.010	LB122772	18 Apr 2017	19 Apr 2017	15 Oct 2017	24 Apr 2017	15 Oct 2017	26 Apr 2017
DUP01	SE164358.011	LB122772	18 Apr 2017	19 Apr 2017	15 Oct 2017	24 Apr 2017	15 Oct 2017	26 Apr 2017
DUP01A	SE164358.012	LB122772	18 Apr 2017	19 Apr 2017	15 Oct 2017	24 Apr 2017	15 Oct 2017	26 Apr 2017
Trace Metals (Dissolved) i	n Water by ICPMS						Method: M	ME-(AU)-[ENV]AN318
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
RB01	SE164358.013	LB122616	18 Apr 2017	19 Apr 2017	15 Oct 2017	20 Apr 2017	15 Oct 2017	21 Apr 2017

TRH (Total Recoverable Hydrocarbons) in Soil Method: Method: Met-(/									
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed	
BH01/0.1-0.3	SE164358.001	LB122637	18 Apr 2017	19 Apr 2017	02 May 2017	20 Apr 2017	30 May 2017	26 Apr 2017	
BH02/0.15-0.35	SE164358.002	LB122637	18 Apr 2017	19 Apr 2017	02 May 2017	20 Apr 2017	30 May 2017	26 Apr 2017	
BH03/0.3-0.5	SE164358.004	LB122637	18 Apr 2017	19 Apr 2017	02 May 2017	20 Apr 2017	30 May 2017	26 Apr 2017	
BH04/0.4-0.6	SE164358.006	LB122637	18 Apr 2017	19 Apr 2017	02 May 2017	20 Apr 2017	30 May 2017	26 Apr 2017	
BH04/0.6-0.8	SE164358.007	LB122637	18 Apr 2017	19 Apr 2017	02 May 2017	20 Apr 2017	30 May 2017	26 Apr 2017	
BH05/0 2-0 4	SE164358.008	LB122637	18 Apr 2017	19 Apr 2017	02 May 2017	20 Apr 2017	30 May 2017	26 Apr 2017	

19 Apr 2017

10 Apr 2017

D1100/0.1 0.0	02104000.010	LD122001	107401 2011	1070012011	02 May 2011	2070012011	00 Widy 2011	2071012011
VOC's in Soil							Method:	ME-(AU)-[ENV]AN433
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH01/0.1-0.3	SE164358.001	LB122743	18 Apr 2017	19 Apr 2017	02 May 2017	21 Apr 2017	31 May 2017	26 Apr 2017
BH02/0.15-0.35	SE164358.002	LB122743	18 Apr 2017	19 Apr 2017	02 May 2017	21 Apr 2017	31 May 2017	27 Apr 2017
BH03/0.3-0.5	SE164358.004	LB122743	18 Apr 2017	19 Apr 2017	02 May 2017	21 Apr 2017	31 May 2017	26 Apr 2017
BH04/0.4-0.6	SE164358.006	LB122743	18 Apr 2017	19 Apr 2017	02 May 2017	21 Apr 2017	31 May 2017	27 Apr 2017
BH04/0.6-0.8	SE164358.007	LB122743	18 Apr 2017	19 Apr 2017	02 May 2017	21 Apr 2017	31 May 2017	26 Apr 2017
BH05/0.2-0.4	SE164358.008	LB122743	18 Apr 2017	19 Apr 2017	02 May 2017	21 Apr 2017	31 May 2017	26 Apr 2017
BH06/0.3-0.5	SE164358.009	LB122743	18 Apr 2017	19 Apr 2017	02 May 2017	21 Apr 2017	31 May 2017	26 Apr 2017
VOCs in Water							Method:	ME-(AU)-IENVIAN433

							moulouri	
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
Trip Spike	SE164358.014	LB122640	18 Apr 2017	19 Apr 2017	25 Apr 2017	20 Apr 2017	30 May 2017	26 Apr 2017
Trip Blank	SE164358.015	LB122640	18 Apr 2017	19 Apr 2017	25 Apr 2017	20 Apr 2017	30 May 2017	26 Apr 2017

Volatile Petroleum Hydrocarbons in Soil

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH01/0.1-0.3	SE164358.001	LB122743	18 Apr 2017	19 Apr 2017	02 May 2017	21 Apr 2017	31 May 2017	26 Apr 2017
BH02/0.15-0.35	SE164358.002	LB122743	18 Apr 2017	19 Apr 2017	02 May 2017	21 Apr 2017	31 May 2017	27 Apr 2017
BH03/0.3-0.5	SE164358.004	LB122743	18 Apr 2017	19 Apr 2017	02 May 2017	21 Apr 2017	31 May 2017	26 Apr 2017
BH04/0.4-0.6	SE164358.006	LB122743	18 Apr 2017	19 Apr 2017	02 May 2017	21 Apr 2017	31 May 2017	27 Apr 2017
BH04/0.6-0.8	SE164358.007	LB122743	18 Apr 2017	19 Apr 2017	02 May 2017	21 Apr 2017	31 May 2017	26 Apr 2017
BH05/0.2-0.4	SE164358.008	LB122743	18 Apr 2017	19 Apr 2017	02 May 2017	21 Apr 2017	31 May 2017	26 Apr 2017
BH06/0.3-0.5	SE164358.009	LB122743	18 Apr 2017	19 Apr 2017	02 May 2017	21 Apr 2017	31 May 2017	26 Apr 2017

BH06/0.3-0.5

BH06/0 7-0 0



## HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.



### **SURROGATES**

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

OC Pesticides in Soil				Method: M	E-(AU)-[ENV]AN420
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Tetrachloro-m-xylene (TCMX) (Surrogate)	BH03/0.3-0.5	SE164358.004	%	60 - 130%	113
	BH06/0.3-0.5	SE164358.009	%	60 - 130%	114
PAH (Polynuclear Aromatic Hydrocarbons) in Soil				Method: M	E-(AU)-[ENV]AN420
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
2-fluorobiphenyl (Surrogate)	BH01/0.1-0.3	SE164358.001	%	70 - 130%	82
	BH02/0.15-0.35	SE164358.002	%	70 - 130%	82
	BH03/0.3-0.5	SE164358.004	%	70 - 130%	82
	BH04/0.4-0.6	SE164358.006	%	70 - 130%	82
	BH04/0.6-0.8	SE164358.007	%	70 - 130%	80
	BH05/0.2-0.4	SE164358.008	%	70 - 130%	82
	BH06/0.3-0.5	SE164358.009	%	70 - 130%	74
	BH06/0.7-0.9	SE164358.010	%	70 - 130%	84
d14-p-terphenyl (Surrogate)	BH01/0.1-0.3	SE164358.001	%	70 - 130%	90
	BH02/0.15-0.35	SE164358.002	%	70 - 130%	84
	BH03/0.3-0.5	SE164358.004	%	70 - 130%	94
	BH04/0.4-0.6	SE164358.006	%	70 - 130%	92
	BH04/0.6-0.8	SE164358.007	%	70 - 130%	88
	BH05/0.2-0.4	SE164358.008	%	70 - 130%	94
	BH06/0.3-0.5	SE164358.009	%	70 - 130%	88
	BH06/0.7-0.9	SE164358.010	%	70 - 130%	92
d5-nitrobenzene (Surrogate)	BH01/0.1-0.3	SE164358.001	%	70 - 130%	92
	BH02/0.15-0.35	SE164358.002	%	70 - 130%	92
	BH03/0.3-0.5	SE164358.004	%	70 - 130%	90
	BH04/0.4-0.6	SE164358.006	%	70 - 130%	92
	BH04/0.6-0.8	SE164358.007	%	70 - 130%	92
	BH05/0.2-0.4	SE164358.008	%	70 - 130%	94
	BH06/0.3-0.5	SE164358.009	%	70 - 130%	80
	BH06/0.7-0.9	SE164358.010	%	70 - 130%	96
PCBs in Soil				Method: M	E-(AU)-[ENV]AN420
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Tetrachloro-m-xylene (TCMX) (Surrogate)	BH04/0.4-0.6	SE164358.006	%	60 - 130%	111
	BH05/0.2-0.4	SE164358.008	%	60 - 130%	117
VOC's in Soli				Method: M	E-(AU)-[ENV]AN433
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	BH01/0.1-0.3	SE164358.001	%	60 - 130%	91
	BH02/0.15-0.35	SE164358.002	%	60 - 130%	82
	BH03/0.3-0.5	SE164358.004	%	60 - 130%	90

	BH03/0.3-0.5	SE164358.004	%	60 - 130%	90
	BH04/0.4-0.6	SE164358.006	%	60 - 130%	89
	BH04/0.6-0.8	SE164358.007	%	60 - 130%	90
	BH05/0.2-0.4	SE164358.008	%	60 - 130%	90
	BH06/0.3-0.5	SE164358.009	%	60 - 130%	83
d4-1,2-dichloroethane (Surrogate)	BH01/0.1-0.3	SE164358.001	%	60 - 130%	86
	BH02/0.15-0.35	SE164358.002	%	60 - 130%	84
	BH03/0.3-0.5	SE164358.004	%	60 - 130%	74
	BH04/0.4-0.6	SE164358.006	%	60 - 130%	74
	BH04/0.6-0.8	SE164358.007	%	60 - 130%	86
	BH05/0.2-0.4	SE164358.008	%	60 - 130%	81
	BH06/0.3-0.5	SE164358.009	%	60 - 130%	83
d8-toluene (Surrogate)	BH01/0.1-0.3	SE164358.001	%	60 - 130%	79
	BH02/0.15-0.35	SE164358.002	%	60 - 130%	76
	BH03/0.3-0.5	SE164358.004	%	60 - 130%	80
	BH04/0.4-0.6	SE164358.006	%	60 - 130%	79
	BH04/0.6-0.8	SE164358.007	%	60 - 130%	79
	BH05/0.2-0.4	SE164358.008	%	60 - 130%	78
	BH06/0.3-0.5	SE164358.009	%	60 - 130%	90
Dibromofluoromethane (Surrogate)	BH01/0.1-0.3	SE164358.001	%	60 - 130%	78
	BH02/0.15-0.35	SE164358.002	%	60 - 130%	82
	BH03/0.3-0.5	SE164358.004	%	60 - 130%	73
	BH04/0.4-0.6	SE164358.006	%	60 - 130%	73



### **SURROGATES**

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

VOC's in Soil (continued)				Method: M	E-(AU)-[ENV]AN433
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Dibromofluoromethane (Surrogate)	BH04/0.6-0.8	SE164358.007	%	60 - 130%	78
	BH05/0.2-0.4	SE164358.008	%	60 - 130%	77
	BH06/0.3-0.5	SE164358.009	%	60 - 130%	77
VOCs in Water				Method: M	E-(AU)-[ENV]AN433
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	Trip Spike	SE164358.014	%	40 - 130%	91
	Trip Blank	SE164358.015	%	40 - 130%	98
d4-1,2-dichloroethane (Surrogate)	Trip Spike	SE164358.014	%	40 - 130%	90
	Trip Blank	SE164358.015	%	40 - 130%	90
d8-toluene (Surrogate)	Trip Spike	SE164358.014	%	40 - 130%	96
	Trip Blank	SE164358.015	%	40 - 130%	87
Dibromofluoromethane (Surrogate)	Trip Spike	SE164358.014	%	40 - 130%	91
	Trip Blank	SE164358.015	%	40 - 130%	94
Volatile Petroleum Hydrocarbons in Soil				Method: M	E-(AU)-[ENV]AN433
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	BH01/0.1-0.3	SE164358.001	%	60 - 130%	91
	BH02/0.15-0.35	SE164358.002	%	60 - 130%	84
	BH03/0.3-0.5	SE164358.004	%	60 - 130%	90
	BH04/0.4-0.6	SE164358.006	%	60 - 130%	88
	BH04/0.6-0.8	SE164358.007	%	60 - 130%	90
	BH05/0.2-0.4	SE164358.008	%	60 - 130%	90
	BH06/0.3-0.5	SE164358.009	%	60 - 130%	83
d4-1,2-dichloroethane (Surrogate)	BH01/0.1-0.3	SE164358.001	%	60 - 130%	86
	BH02/0.15-0.35	SE164358.002	%	60 - 130%	80
	BH03/0.3-0.5	SE164358.004	%	60 - 130%	74
	BH04/0.4-0.6	SE164358.006	%	60 - 130%	83
	BH04/0.6-0.8	SE164358.007	%	60 - 130%	86
	BH05/0.2-0.4	SE164358.008	%	60 - 130%	81
	BH06/0.3-0.5	SE164358.009	%	60 - 130%	83
d8-toluene (Surrogate)	BH01/0.1-0.3	SE164358.001	%	60 - 130%	79
	BH02/0.15-0.35	SE164358.002	%	60 - 130%	90
	BH03/0.3-0.5	SE164358.004	%	60 - 130%	80
	BH04/0.4-0.6	SE164358.006	%	60 - 130%	75
	BH04/0.6-0.8	SE164358.007	%	60 - 130%	79
	BH05/0.2-0.4	SE164358.008	%	60 - 130%	78
	BH06/0.3-0.5	SE164358.009	%	60 - 130%	90
Dibromofluoromethane (Surrogate)	BH01/0.1-0.3	SE164358.001	%	60 - 130%	78
	BH02/0.15-0.35	SE164358.002	%	60 - 130%	75
	BH03/0.3-0.5	SE164358.004	%	60 - 130%	73
	BH04/0.4-0.6	SE164358.006	%	60 - 130%	81
	BH04/0.6-0.8	SE164358.007	%	60 - 130%	78
	BH05/0.2-0.4	SE164358.008	%	60 - 130%	77
	BH06/0.3-0.5	SE164358.009	%	60 - 130%	77
1				-	



Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury (dissolved) in Water			ENVJAN311(Perth)/AN312
Sample Number Parameter	Units	LOR	Result
LB122864.001 Mercury	mg/L	0.0001	<0.0001

### Mercury in Soil

Mercury in Soil		Meth	nod: ME-(AU)-[ENV]AN312	
Sample Number	Parameter	Units	LOR	Result
LB122741.001	Mercury	mg/kg	0.05	<0.05

### **OC Pesticides in Soil**

OC Pesticides in Soil			Metho	od: ME-(AU)-[ENV]AN420
Sample Number	Parameter	Units	LOR	Result
LB122637.001	Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1
	Alpha BHC	mg/kg	0.1	<0.1
	Lindane	mg/kg	0.1	<0.1
	Heptachlor	mg/kg	0.1	<0.1
	Aldrin	mg/kg	0.1	<0.1
	Beta BHC	mg/kg	0.1	<0.1
	Delta BHC	mg/kg	0.1	<0.1
	Heptachlor epoxide	mg/kg	0.1	<0.1
	Alpha Endosulfan	mg/kg	0.2	<0.2
	Gamma Chlordane	mg/kg	0.1	<0.1
	Alpha Chlordane	mg/kg	0.1	<0.1
	p,p'-DDE	mg/kg	0.1	<0.1
	Dieldrin	mg/kg	0.2	<0.2
	Endrin	mg/kg	0.2	<0.2
	Beta Endosulfan	mg/kg	0.2	<0.2
	p,p'-DDD	mg/kg	0.1	<0.1
	p,p'-DDT	mg/kg	0.1	<0.1
	Endosulfan sulphate	mg/kg	0.1	<0.1
	Endrin Aldehyde	mg/kg	0.1	<0.1
	Methoxychlor	mg/kg	0.1	<0.1
	Endrin Ketone	mg/kg	0.1	<0.1
	Isodrin	mg/kg	0.1	<0.1
	Mirex	mg/kg	0.1	<0.1
Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	113

PAR (Folynucieal Alo	matic riyurocarbons) in Sor			INGUI	00. ME-(AO)-[ENV]AN+20
Sample Number		Parameter	Units	LOR	Result
LB122637.001		Naphthalene	mg/kg	0.1	<0.1
		2-methylnaphthalene	mg/kg	0.1	<0.1
		1-methylnaphthalene	mg/kg	0.1	<0.1
		Acenaphthylene	mg/kg	0.1	<0.1
		Acenaphthene	mg/kg	0.1	<0.1
		Fluorene	mg/kg	0.1	<0.1
		Phenanthrene	mg/kg	0.1	<0.1
		Anthracene	mg/kg	0.1	<0.1
		Fluoranthene	mg/kg	0.1	<0.1
		Pyrene	mg/kg	0.1	<0.1
		Benzo(a)anthracene	mg/kg	0.1	<0.1
		Chrysene	mg/kg	0.1	<0.1
		Benzo(a)pyrene	mg/kg	0.1	<0.1
		Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1
		Dibenzo(ah)anthracene	mg/kg	0.1	<0.1
		Benzo(ghi)perylene	mg/kg	0.1	<0.1
		Total PAH (18)	mg/kg	0.8	<0.8
	Surrogates	d5-nitrobenzene (Surrogate)	%	-	98
		2-fluorobiphenyl (Surrogate)	%	-	86
		d14-p-terphenyl (Surrogate)	%	-	82
PCBs in Soil				Meth	od: ME-(AU)-[ENV]AN420
Sample Number		Parameter	Units	LOR	



Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

PCBs in Soil (continued	d)			Metho	od: ME-(AU)-[ENV]AN420
Sample Number		Parameter	Units	LOR	Result
LB122637.001		Arochlor 1016	mg/kg	0.2	<0.2
		Arochlor 1221	mg/kg	0.2	<0.2
		Arochlor 1232	mg/kg	0.2	<0.2
		Arochlor 1242	mg/kg	0.2	<0.2
		Arochlor 1248	mg/kg	0.2	<0.2
		Arochlor 1254	mg/kg	0.2	<0.2
		Arochlor 1260	mg/kg	0.2	<0.2
		Arochlor 1262	mg/kg	0.2	<0.2
		Arochlor 1268	mg/kg	0.2	<0.2
		Total PCBs (Arochlors)	mg/kg	1	<1
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	113
Total Recoverable Met	als in Soil/Waste Solids/Material	s by ICPOES		Method: ME-	(AU)-IENVIAN040/AN320
Sample Number		Daramotor	Unite	LOP	Posult
L B122772 001			Units	2	Result
LB122772.001		Arsenic, As	mg/kg	0.2	<0.2
		Cadmium, Cd	mg/kg	0.3	<0.3
			mg/kg	0.3	<0.5
			mg/kg	0.5	<0.5
			mg/kg	0.5	<0 F
			mg/kg	0.5	<0.5
		Zinč, Zn	mg/kg	0.5	<0.5
Trace Metals (Dissolve	d) in Water by ICPMS			Metho	od: ME-(AU)-[ENV]AN318
Sample Number		Parameter	Units	LOR	Result
LB122616.001		Arsenic, As	μg/L	1	<1
		Cadmium, Cd	μg/L	0.1	<0.1
		Chromium, Cr	μg/L	1	<1
		Copper, Cu	μg/L	1	<1
		Lead, Pb	μg/L	1	<1
		Nickel, Ni	μg/L	1	<1
		Zinc Zn	ua//	5	<5
		200,20	µy/L	0	~5
TRH (Total Recoverabl	le Hydrocarbons) in Soil	200, 20	μg/L	Meth	od: ME-(AU)-[ENV]AN403
TRH (Total Recoverabl Sample Number	le Hydrocarbons) in Soll	Parameter	Units	LOR	od: ME-(AU)-[ENV]AN403 Result
TRH (Total Recoverabl Sample Number	le Hydrocarbons) in Soil	Parameter TRH C10-C14	Units ma/ka	LOR 20	od: ME-(AU)-[ENV]AN403 Result
TRH (Total Recoverabl Sample Number LB122637.001	le Hydrocarbons) in Soll	Parameter TRH C10-C14 TRH C15-C28	Units mg/kg ma/ka	LOR 20 45	cd: ME-(AU)-[ENV]AN403 Result <20 <45
TRH (Total Recoverabl Sample Number LB122637.001	le Hydrocarbons) in Soll	Parameter TRH C10-C14 TRH C15-C28 TRH C26-C36	Units mg/kg mg/kg	LOR 20 45	Contemporation Contemporatio Contemporation Contemporation Contemporation Contemp
TRH (Total Recoverabl Sample Number LB122637.001	le Hydrocarbons) in Soll	Parameter           TRH C10-C14           TRH C15-C28           TRH C29-C36           TRH C37-C40	Units mg/kg mg/kg mg/kg mg/kg mg/kg	Method           LOR           20           45           45           100	Content         Content <t< td=""></t<>
TRH (Total Recoverabl Sample Number LB122637.001	le Hydrocarbons) in Soll	Parameter           TRH C10-C14           TRH C15-C28           TRH C29-C36           TRH C37-C40           TRH C10-C36 Total	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Metho           LOR           20           45           100           110	Content         Content <t< td=""></t<>
TRH (Total Recoverabl Sample Number LB122637.001	le Hydrocarbons) in Soll	Parameter           TRH C10-C14           TRH C15-C28           TRH C29-C36           TRH C37-C40           TRH C10-C36 Total	Units mg/kg mg/kg mg/kg mg/kg mg/kg	Metho LOR 20 45 45 100 110	Solution         Solution           Control         Co
TRH (Total Recoverabl Sample Number LB122637.001	le Hydrocarbons) in Soll	Parameter           TRH C10-C14           TRH C15-C28           TRH C29-C36           TRH C37-C40           TRH C10-C36 Total	Units mg/kg mg/kg mg/kg mg/kg mg/kg	Meth LOR 20 45 45 100 110 Meth	Ko           Child         Centry           Result         20           <45
TRH (Total Recoverabl Sample Number LB122637.001 VOC's In Soll Sample Number	le Hydrocarbons) in Soll	Parameter           TRH C10-C14           TRH C15-C28           TRH C29-C36           TRH C37-C40           TRH C10-C36 Total	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg Units	Meth LOR 20 45 45 100 110 Meth LOR	S           Result            <20
TRH (Total Recoverabl Sample Number LB122637.001 VOC's In Soil Sample Number LB122743.001	le Hydrocarbons) in Soll Fumigants	Parameter           TRH C10-C14           TRH C15-C28           TRH C29-C36           TRH C37-C40           TRH C10-C36 Total	Units mg/kg mg/kg mg/kg mg/kg mg/kg Units mg/kg	Metho LOR 20 45 45 100 110 Metho LOR 0.1	S           Result            <20
TRH (Total Recoverabl Sample Number LB122637.001 VOC's In Soil Sample Number LB122743.001	le Hydrocarbons) in Soll Fumigants	Parameter           TRH C10-C14           TRH C15-C28           TRH C29-C36           TRH C37-C40           TRH C10-C36 Total             Parameter           2,2-dichloropropane           1,2-dichloropropane	Units mg/kg mg/kg mg/kg mg/kg mg/kg Units mg/kg mg/kg	Metho LOR 20 45 45 100 110 Metho LOR 0.1 0.1	S           Result            <20
TRH (Total Recoverabl Sample Number LB122637.001 VOC's in Soil Sample Number LB122743.001	le Hydrocarbons) in Soll Fumigants	Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total Parameter 2,2-dichloropropane 1,2-dichloropropane cis-1,3-dichloropropane	Units mg/kg	Metho LOR 20 45 45 100 110 Metho LOR 0.1 0.1 0.1	<g< td="">           CAUJ-[ENV]AN403           Result           &lt;20</g<>
TRH (Total Recoverabl Sample Number LB122637.001 VOC's In Soll Sample Number LB122743.001	le Hydrocarbons) in Soll Fumigants	Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total Parameter 2,2-dichloropropane 1,2-dichloropropane cis-1,3-dichloropropene trans-1,3-dichloropropene	Units mg/kg	Metho LOR 20 45 45 100 110 Metho LOR 0.1 0.1 0.1 0.1 0.1	<g< td="">           CAUJ-[ENV]AN403           Result           &lt;20</g<>
TRH (Total Recoverabl Sample Number LB122637.001 VOC's In Soll Sample Number LB122743.001	le Hydrocarbons) in Soll Fumigants	Parameter         TRH C10-C14         TRH C15-C28         TRH C29-C36         TRH C37-C40         TRH C10-C36 Total         Parameter         2.2-dichloropropane         1.2-dichloropropane         cis-1,3-dichloropropene         trans-1,3-dichloropropene         1,2-dichloropropene         1,2-dichloropropene         1,2-dichloropropene         1,2-dichloropropene	Units  mg/kg	Methy LOR 20 45 45 100 110 Methy LOR 0.1 0.1 0.1 0.1 0.1 0.1	<g< td="">           cd: ME-(AU)-[ENV]AN403           Result           &lt;20</g<>
TRH (Total Recoverabl Sample Number LB122637.001 VOC's In Soll Sample Number LB122743.001	Fumigants	Parameter         TRH C10-C14         TRH C15-C28         TRH C29-C36         TRH C37-C40         TRH C10-C36 Total             Parameter         2,2-dichloropropane         1,2-dichloropropane         cis-1,3-dichloropropene         trans-1,3-dichloropropene         1,2-dibromoethane (EDB)         Dichlorodifluoromethane (CFC-12)	Units mg/kg	Methy LOR 20 45 45 100 110 Methy LOR 0.1 0.1 0.1 0.1 0.1 0.1 1	cg           Result           <20
TRH (Total Recoverabl Sample Number LB122637.001 VOC's in Soll Sample Number LB122743.001	Hydrocarbons) in Soll Fumigants Halogenated Aliphatics	Parameter         TRH C10-C14         TRH C15-C28         TRH C29-C36         TRH C37-C40         TRH C10-C36 Total             Parameter         2,2-dichloropropane         1,2-dichloropropane         cis-1,3-dichloropropene         trans-1,3-dichloropropene         1,2-dibromoethane (EDB)         Dichlorodifluoromethane (CFC-12)         Chloromethane	Units mg/kg	Methy           LOR           20           45           100           110           Methy           LOR           0.1           0.1           0.1           0.1           0.1           10.1           10.1           11           11	<0
TRH (Total Recoverabl Sample Number LB122637.001 VOC's In Soll Sample Number LB122743.001	Hydrocarbons) In Soll Fumigants Halogenated Aliphatics	Parameter         TRH C10-C14         TRH C15-C28         TRH C29-C36         TRH C37-C40         TRH C10-C36 Total             Parameter         2,2-dichloropropane         1,2-dichloropropane         cis-1,3-dichloropropene         trans-1,3-dichloropropene         1,2-dibromoethane (EDB)         Dichlorodifluoromethane (CFC-12)         Chloromethane         Vinyl chloride (Chloroethene)	Units mg/kg	Methy LOR 20 45 45 100 110 Methy LOR 0.1 0.1 0.1 0.1 0.1 0.1 1 1 1 1 1 1 1 1	cg           Result           <20
TRH (Total Recoverabl Sample Number LB122637.001 VOC's In Soll Sample Number LB122743.001	Hydrocarbons) In Soll Fumigants Halogenated Aliphatics	Parameter         TRH C10-C14         TRH C15-C28         TRH C29-C36         TRH C37-C40         TRH C10-C36 Total             Parameter         2,2-dichloropropane         1,2-dichloropropane         cis-1,3-dichloropropene         trans-1,3-dichloropropene         1,2-dibromoethane (EDB)         Dichlorodifluoromethane (CFC-12)         Chloromethane         Vinyl chloride (Chloroethene)         Bromomethane	Units mg/kg	Methy LOR 20 45 45 100 110 Methy LOR 0.1 0.1 0.1 0.1 0.1 0.1 1 1 1 1 1 1 1 1 1 1 1 1 1	S           Result            <20
TRH (Total Recoverabl Sample Number LB122637.001 VOC's In Soil Sample Number LB122743.001	Hydrocarbons) In Soll Fumigants Halogenated Aliphatics	Parameter         TRH C10-C14         TRH C15-C28         TRH C29-C36         TRH C37-C40         TRH C10-C36 Total             Parameter         2,2-dichloropropane         1,2-dichloropropane         1,2-dichloropropene         tras-1,3-dichloropropene         1,2-dibromoethane (EDB)         Dichlorodifluoromethane         Vinyl chloride (Chloroethene)         Bromomethane         Chloroethane	Units mg/kg	Methy LOR 20 45 45 100 110 Methy LOR 0.1 0.1 0.1 0.1 0.1 0.1 1 1 1 0.1 1 1 0.1 0.	<0
TRH (Total Recoverabl Sample Number LB122637.001 VOC's In Soil Sample Number LB122743.001	Fumigants	Parameter         TRH C10-C14         TRH C15-C28         TRH C29-C36         TRH C37-C40         TRH C10-C36 Total         Parameter         2,2-dichloropropane         1,2-dichloropropane         1,2-dichloropropane         1,2-dichloropropane         1,2-dichloropropane         1,2-dichloropropane         1,2-dichloropropane         1,2-dichloropropene         1,2-dibromethane (EDB)         Dichlorodifluoromethane (CFC-12)         Chloromethane         Vinyl chloride (Chloroethene)         Bromomethane         Chloroethane         Trichlorofluoromethane         there the	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Methy LOR 20 45 45 100 110 Methy LOR 0.1 0.1 0.1 0.1 0.1 0.1 1 1 1 1 0.1 5 5	<0
TRH (Total Recoverabl Sample Number LB122637.001 VOC's In Soil Sample Number LB122743.001	Fumigants	Parameter         TRH C10-C14         TRH C15-C28         TRH C29-C36         TRH C37-C40         TRH C10-C36 Total         Parameter         2,2-dichloropropane         1,2-dichloropropane         1,2-dichloropropane         1,2-dichloropropane         1,2-dichloropropene         trans-1,3-dichloropropene         1,2-dichloropropene         1,2-dichloropropene         1,2-dichloropropene         1,2-dichloropropene         1,2-dichloromethane (EDB)         Dichlorodifluoromethane (CFC-12)         Chloromethane         Vinyl chloride (Chloroethene)         Bromomethane         Chloroethane         Trichlorofluoromethane         Idodomethane         Idodomethane	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Methy LOR 20 45 45 100 110 Methy LOR 0.1 0.1 0.1 0.1 0.1 0.1 1 1 1 1 1 1 5 5	<0
TRH (Total Recoverabl Sample Number LB122637.001 VOC's In Soil Sample Number LB122743.001	Fumigants Halogenated Aliphatics	Parameter         TRH C10-C14         TRH C15-C28         TRH C29-C36         TRH C37-C40         TRH C10-C36 Total         Parameter         2,2-dichloropropane         1,2-dichloropropane         1,2-dichloropropene         trans-1,3-dichloropropene         1,2-dichloropropene         1,1-dichloropropene         1,1-dichloropropene         1,1-dichloropropene         1,1-dichloropropene	yg/L           Units           mg/kg	Methy LOR 20 45 45 100 110 Methy LOR 0.1 0.1 0.1 0.1 0.1 1 1 0.1 1 1 0.1 0.	cg         Result         <20
TRH (Total Recoverabl Sample Number LB122637.001 VOC's In Soil Sample Number LB122743.001	Fumigants Halogenated Aliphatics	Parameter         TRH C10-C14         TRH C15-C28         TRH C29-C36         TRH C37-C40         TRH C10-C36 Total             Parameter         2,2-dichloropropane         1,2-dichloropropane         cis-1,3-dichloropropene         trans-1,3-dichloropropene         trans-1,3-dichloropropene         1,2-dibromoethane (EDB)         Dichlorodifluoromethane (CFC-12)         Chloromethane         Vinyl chloride (Chloroethene)         Bromomethane         Chloroethane         1,1-dichloropthane         Iodomethane         Iodomethane         Dichlorofuoromethane	yg/L           Units           mg/kg           mg/kg <td>Methy LOR 20 45 45 100 110 Methy LOR 0.1 0.1 0.1 0.1 0.1 1 1 0.1 1 1 0.1 0.</td> <td>&lt;20</td> <45	Methy LOR 20 45 45 100 110 Methy LOR 0.1 0.1 0.1 0.1 0.1 1 1 0.1 1 1 0.1 0.	<20
TRH (Total Recoverabl Sample Number LB122637.001 VOC's In Soll Sample Number LB122743.001	E Hydrocarbons) in Soll	Parameter         TRH C10-C14         TRH C15-C28         TRH C29-C36         TRH C37-C40         TRH C10-C36 Total         Parameter         2.2-dichloropropane         1.2-dichloropropane         tis-1.3-dichloropropene         trans-1.3-dichloropropene         trans-1.3-dichloropropene         1.2-dibromoethane (EDB)         Dichlorodifluoromethane (CFC-12)         Chloromethane         Vinyl chloride (Chloroethene)         Bromomethane         Chloroethane         1.1-dichloroptuoromethane         Indomethane         Indomethane         Dichlorothuoromethane         Chloromethane         1.1-dichlorofuoromethane         Indomethane         Allyl chloride         Allyl chloride	yg/L           Units           mg/kg           mg/kg <td>Methy LOR 20 45 45 100 110 Methy LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 1 1 1 1 5 0.1 0.5 0.1 0.5 0.1</td> <td>&lt;20</td> <45	Methy LOR 20 45 45 100 110 Methy LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 1 1 1 1 5 0.1 0.5 0.1 0.5 0.1	<20
TRH (Total Recoverabl Sample Number LB122637.001 VOC's In Soll Sample Number LB122743.001	E Hydrocarbons) in Soll Fumigants Halogenated Aliphatics	Parameter         TRH C10-C14         TRH C15-C28         TRH C29-C36         TRH C37-C40         TRH C10-C36 Total         Parameter         2,2-dichloropropane         1,2-dichloropropane         cis-1,3-dichloropropene         trans-1,3-dichloropropene         trans-1,3-dichloropropene         1,2-dibromoethane (EDB)         Dichlorodifluoromethane (CFC-12)         Chloromethane         Vinyl chloride (Chloroethene)         Bromomethane         Chloroethane         1,1-dichloroptuoromethane         Iodomethane         1,1-dichloroethene         Dichloromethane (Methylene chloride)         Allyl chloride         trans-1,2-dichloroethene	yg/L           Units           mg/kg	Methy LOR 20 45 45 100 110 Methy LOR 0.1 0.1 0.1 0.1 0.1 0.1 1 1 1 1 1 1 5 0.1 0.5 0.1 0.1 0.5 0.1 0.1 0.5 0.1 0.1 0.5 0.1 0.1 0.5 0.1 0.1 0.5 0.1 0.1 0.5 0.1 0.1 0.5 0.1 0.1 0.5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	cg         Result         <20
TRH (Total Recoverabl Sample Number LB122637.001 VOC's In Soll Sample Number LB122743.001	E Hydrocarbons) in Soll	Parameter         TRH C10-C14         TRH C15-C28         TRH C29-C36         TRH C37-C40         TRH C10-C36 Total         Parameter         2,2-dichloropropane         1,2-dichloropropane         cis-1,3-dichloropropene         trans-1,3-dichloropropene         1,2-dibromoethane (EDB)         Dichlorodifluoromethane (CFC-12)         Chloromethane         Vinyl chloride (Chloroethene)         Bromomethane         Ichloroethane         1,1-dichloroethene         Dichlorofuluoromethane         Ichloroethane         Allyl chloride         trans-1,2-dichloroethene         1,1-dichloroethene         Dichloroethane         1,1-dichloroethene         1,1-dichloroethene         1,1-dichloroethene	yg/L           Units           mg/kg	Methy LOR 20 45 45 100 110 Methy LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 1 1 1 1 1 5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	cg         Result         <20
TRH (Total Recoverabl Sample Number LB122637.001 VOC's In Soll Sample Number LB122743.001	Fumigants Halogenated Aliphatics	Parameter         TRH C10-C14         TRH C15-C28         TRH C29-C36         TRH C37-C40         TRH C10-C38 Total         Parameter         2,2-dichloropropane         1,2-dichloropropane         cis-1,3-dichloropropene         trans-1,3-dichloropropene         1,2-dibromoethane (EDB)         Dichlorodifluoromethane         Vinyl chloride (Chloroethene)         Bromomethane         Chloroethane         Trichlorofluoromethane         Iochloronethane         1,1-dichloroethene         Dichloromethane         1,1-dichloroethene	yg/L           Units           mg/kg	Methy LOR 20 45 45 100 110 Methy LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 1 1 1 5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	<20
TRH (Total Recoverabl Sample Number LB122637.001 VOC's In Soll Sample Number LB122743.001	E Hydrocarbons) In Soll	Parameter         TRH C10-C14         TRH C15-C28         TRH C29-C36         TRH C37-C40         TRH C10-C36 Total         Parameter         2.2-dichloropropane         1.2-dichloropropane         cis-1.3-dichloropropene         trans-1.3-dichloropropene         1.2-dibromoethane (EDB)         Dichlorodifluoromethane (CFC-12)         Chloromethane         Vinyl chloride (Chloroethene)         Bromomethane         Trichlorofluoromethane         Iodomethane         1.1-dichloroethene         Dichloromethane (Methylene chloride)         Allyl chloride         trans-1.2-dichloroethene         1.1-dichloroethene         Dichloromethane         1.1-dichloroethene         Dichloromethane (Methylene chloride)         Allyl chloride         trans-1.2-dichloroethene         1.1-dichloroethene         Dichloromethane         1.1-dichloroethene         Dichloroethene         Dichloroethene         Dichloroethene         1.1-dichloroethene         State math	yg/L           Units           mg/kg	Methy           LOR           20           45           100           110           Methy           LOR           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.5           0.1           0.1           0.1           0.5           0.1           0.1           0.1           0.1	<20
TRH (Total Recoverabl Sample Number LB122637.001 VOC's In Soll Sample Number LB122743.001	E Hydrocarbons) in Soll	Parameter         TRH C10-C14         TRH C15-C28         TRH C29-C36         TRH C37-C40         TRH C10-C36 Total         Parameter         2.2-dichloropropane         1.2-dichloropropane         cis-1,3-dichloropropene         trans-1,3-dichloropropene         1.2-dibromoethane (EDB)         Dichlorodifluoromethane (CFC-12)         Chloromethane         Vinyl chloride (Chloroethene)         Bromomethane         Trichlorofluoromethane         Idomethane         1,1-dichloroethene         Dichloromethane (Methylene chloride)         Allyl chloride         trans-1,2-dichloroethene         1,1-dichloroethane         richloromethane         1,1-dichloroethene         Dichloromethane (Methylene chloride)         Allyl chloride         trans-1,2-dichloroethene         1,1-dichloroethene         1,1-dichloroethene         Dichloroethane         1,1-dichloroethene         1,1-dichloroethene         1,2-dichloroethene         Bromochloromethane         1,2-dichloroethene	yg/L           Units           mg/kg	Methy           LOR           20           45           100           110           Methy           LOR           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.1           0.5           0.1           0.1           0.1           0.1           0.1           0.1	<20

Page 8 of 22



Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

VOC's in Soil (continued	d)			Meth	nod: ME-(AU)-[ENV]AN433
Sample Number		Parameter	Units	LOR	Result
LB122743.001	Halogenated Aliphatics	1.1-dichloropropene	ma/ka	0.1	<0.1
	·····g-····		ma/ka	0.1	<0.1
		Dibromomethane	ma/ka	0.1	<0.1
		Trichloroethene (Trichloroethylene -TCE)	ma/ka	0.1	<0.1
		1 1 2-trichloroethane	mg/kg	0.1	<0.1
			mg/kg	0.1	<0.1
		Tetrachloroethene (Perchloroethylene PCE)	mg/kg	0.1	<0.1
			mg/kg	0.1	<0.1
			mg/kg		<0.1
			IIIg/kg		
		1,1,2,2-tetrachloroethane	mg/kg	0.1	<0.1
		1,2,3-trichloropropane	mg/kg	0.1	<0.1
		trans-1,4-dichloro-2-butene	mg/kg	1	<1
		1,2-dibromo-3-chloropropane	mg/kg	0.1	<0.1
		Hexachlorobutadiene	mg/kg	0.1	<0.1
	Halogenated Aromatics	Chlorobenzene	mg/kg	0.1	<0.1
		Bromobenzene	mg/kg	0.1	<0.1
		2-chlorotoluene	mg/kg	0.1	<0.1
		4-chlorotoluene	mg/kg	0.1	<0.1
		1,3-dichlorobenzene	mg/kg	0.1	<0.1
		1,4-dichlorobenzene	mg/kg	0.1	<0.1
		1,2-dichlorobenzene	mg/kg	0.1	<0.1
		1,2,4-trichlorobenzene	mg/kg	0.1	<0.1
		1,2,3-trichlorobenzene	mg/kg	0.1	<0.1
	Monocyclic Aromatic	Benzene	ma/kg	0.1	<0.1
	Hydrocarbons	Toluene	ma/ka	0.1	<0.1
	,	Ethylbenzene	ma/ka	0.1	<0.1
		m/n-xylene	ma/ka	0.2	<0.2
			mg/kg	0.2	<0.2
		Styrene (Vinul benzene)	mg/kg	0.1	<0.1
			mg/kg	0.1	<0.1
			mg/kg	0.1	
		n-propyidenzene	mg/kg	0.1	<0.1
		1,3,5-trimethylbenzene	mg/kg	0.1	<0.1
		tert-butylbenzene	mg/kg	0.1	<0.1
		1,2,4-trimethylbenzene	mg/kg	0.1	<0.1
		sec-butylbenzene	mg/kg	0.1	<0.1
		p-isopropyltoluene	mg/kg	0.1	<0.1
		n-butylbenzene	mg/kg	0.1	<0.1
	Nitrogenous Compounds	Acrylonitrile	mg/kg	0.1	<0.1
		2-nitropropane	mg/kg	10	<10
	Oxygenated Compounds	Acetone (2-propanone)	mg/kg	10	<10
		MtBE (Methyl-tert-butyl ether)	mg/kg	0.1	<0.1
		Vinyl acetate	mg/kg	10	<10
		MEK (2-butanone)	mg/kg	10	<10
		MIBK (4-methyl-2-pentanone)	mg/kg	1	<1
		2-hexanone (MBK)	mg/kg	5	<5
	Polycyclic VOCs	Naphthalene	mg/kg	0.1	<0.1
	Sulphonated	Carbon disulfide	mg/kg	0.5	<0.5
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	83
		d4-1,2-dichloroethane (Surrogate)	%	-	76
		d8-toluene (Surrogate)	%	-	81
		Bromofluorobenzene (Surrogate)	%	-	86
	Totals	Total BTEX	ma/ka	0.6	<0.3
		Total Chlorinated Hydrocarbons VIC FPA*	ma/ka	1.8	<1.8
		Total Other Chlorinated Hydrocarbons VIC EPA*	ma/ka	1.5	<1.8
	Tribalomethanes	Chloroform	ma/ka	0.1	<0.1
	rinaloniculdiles	Bromodiableromethane		0.1	
			mg/kg	0.1	<0.1
		Bromoform	mg/kg	0.1	-0.1
		Bromoloffi	mg/ĸg	U. 1	SU.1
VOCs in Water				Meth	od: ME-(AU)-[ENV]AN433

Sample Number

Parameter

Units LOR



### SE164358 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

### VOCs in Water (continued)

VOCs in Water (continued)					od: ME-(AU)-[ENV]AN433
Sample Number		Parameter	Units	LOR	Result
LB122640.001	Monocyclic Aromatic	Benzene	μg/L	0.5	<0.5
	Hydrocarbons	Toluene	μg/L	0.5	<0.5
		Ethylbenzene	μg/L	0.5	<0.5
		m/p-xylene	μg/L	1	<1
		o-xylene	μg/L	0.5	<0.5
	Polycyclic VOCs	Naphthalene	μg/L	0.5	<0.5
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	81
		d4-1,2-dichloroethane (Surrogate)	%	-	76
		d8-toluene (Surrogate)	%	-	77
		Bromofluorobenzene (Surrogate)	%	-	79
Volatile Petroleum Hydr	rocarbons in Soil			Meth	od: ME-(AU)-[ENV]AN433
Sample Number		Parameter	Units	LOR	Result
LB122743.001		TRH C6-C9	mg/kg	20	<20
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	74
		d4-1,2-dichloroethane (Surrogate)	%	-	72
		d8-toluene (Surrogate)	%	-	82



Method: ME-(AU)-[ENV]AN002

2

2

2

2

12

37

37

37

36

38

Original Duplicate Criteria % RPD %

14

14

15

17

11

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury in Soil						Meth	od: ME-(AU)-	ENVJAN312
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE164358.011	LB122741.014	Mercury	mg/kg	0.05	<0.05	<0.05	200	0
SE164448.024	LB122741.024	Mercury	mg/kg	0.05	0.0602564796	60.0474913056	123	19

Units

%w/w

%w/w

%w/w

%w/w

%w/w

µg/L

µg/L

µg/L

<1

5

14

1

5

<1

5

14

200

35

52

LOR

0.5

0.5

0.5

0.5

0.5

13

14

15

17

13

Moisture Content						
Original	Duplicate	Parameter				
SE164356.003	LB122790.022	% Moisture				
SE164356.013	LB122790.033	% Moisture				
SE164358.004	LB122790.044	% Moisture				
SE164358.012	LB122790.053	% Moisture				
SE164501.007	LB122790.011	% Moisture				
OC Destisides in (	Poll					

OC Pesticides in S	oil						Meth	nod: ME-(AU)-	(ENVJAN420
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE164358.009	LB122637.026		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	0	200	0
			Alpha BHC	mg/kg	0.1	<0.1	0	200	0
			Lindane	mg/kg	0.1	<0.1	0	200	0
			Heptachlor	mg/kg	0.1	<0.1	0	200	0
			Aldrin	mg/kg	0.1	<0.1	0	200	0
			Beta BHC	mg/kg	0.1	<0.1	0	200	0
			Delta BHC	mg/kg	0.1	<0.1	0	200	0
			Heptachlor epoxide	mg/kg	0.1	<0.1	0	200	0
			o,p'-DDE	mg/kg	0.1	<0.1	0	200	0
			Alpha Endosulfan	mg/kg	0.2	<0.2	0	200	0
			Gamma Chlordane	mg/kg	0.1	<0.1	0	200	0
			Alpha Chlordane	mg/kg	0.1	<0.1	0	200	0
			trans-Nonachlor	mg/kg	0.1	<0.1	0	200	0
			p,p'-DDE	mg/kg	0.1	<0.1	0	200	0
			Dieldrin	mg/kg	0.2	<0.2	0	200	0
			Endrin	mg/kg	0.2	<0.2	0	200	0
			o,p'-DDD	mg/kg	0.1	<0.1	0	200	0
			o,p'-DDT	mg/kg	0.1	<0.1	0	200	0
			Beta Endosulfan	mg/kg	0.2	<0.2	0	200	0
			p,p'-DDD	mg/kg	0.1	<0.1	0	200	0
			p,p'-DDT	mg/kg	0.1	<0.1	0	200	0
			Endosulfan sulphate	mg/kg	0.1	<0.1	0	200	0
			Endrin Aldehyde	mg/kg	0.1	<0.1	0	200	0
			Methoxychlor	mg/kg	0.1	<0.1	0	200	0
			Endrin Ketone	mg/kg	0.1	<0.1	0	200	0
			Isodrin	mg/kg	0.1	<0.1	0	200	0
			Mirex	mg/kg	0.1	<0.1	0	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.17	0.177	30	3

Total Recoverable	Metals in Soil/Waste Solids/Materials	by ICPOES				Method: ME	-(AU)-[ENV]A	N040/AN320
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE164357.008	LB122772.024	Lead, Pb	mg/kg	1	19	20	35	1
SE164358.011	LB122772.014	Arsenic, As	mg/kg	3	<3	<3	148	10
		Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	200	0
		Chromium, Cr	mg/kg	0.3	6.1	7.3	37	17
		Copper, Cu	mg/kg	0.5	0.6	0.7	104	12
		Lead, Pb	mg/kg	1	16	16	36	1
		Nickel, Ni	mg/kg	0.5	<0.5	<0.5	200	0
		Zinc, Zn	mg/kg	0.5	0.6	0.8	200	0
Trace Metals (Diss	olved) in Water by ICPMS					Meth	od: ME-(AU)-	ENVJAN318
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE164247.010	LB122616.014	Cadmium, Cd	µg/L	0.1	<0.1	<0.1	200	0
		Copper, Cu	µg/L	1	<1	<1	144	0

Lead, Pb

Nickel, Ni

Zinc, Zn

0

3

1



The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Original	Dunlicate		Parameter	Units	I OR	Original	Dunlicate	Criteria %	RPD %
Original	Duplicate			Office	LOK	Original	Duplicate		
SE164357.008	LB122637.027		IRH C10-C14	mg/kg	20	<20	0	200	0
			TRH C15-C28	mg/kg	45	<45	0	200	0
			TRH C29-C36	mg/kg	45	<45	0	200	0
			TRH C37-C40	mg/kg	100	<100	0	200	0
			TRH C10-C36 Total	mg/kg	110	<110	0	200	0
			TRH C10-C40 Total	mg/kg	210	<210	0	200	0
		TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	<25	0	200	0
			TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	0	200	0
			TRH >C16-C34 (F3)	mg/kg	90	<90	0	200	0
			TRH >C34-C40 (F4)	mg/kg	120	<120	0	200	0
VOC's in Soil							Metho	od: ME-(AU)-	ENVIAN43
Oniminal	Dunlingto		Demonster	11-24-		Oniminal	Duuliaata	Ouitouia 0/	DDD //
Original	Duplicate	=	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE164357.010	LB122743.014	Fumigants	2,2-dichloropropane	mg/kg	0.1	<0.1	<0.1	200	0
			1,2-dichloropropane	mg/kg	0.1	<0.1	<0.1	200	0
			cis-1,3-dichloropropene	mg/kg	0.1	<0.1	<0.1	200	0
			trans-1,3-dichloropropene	mg/kg	0.1	<0.1	<0.1	200	0
			1,2-dibromoethane (EDB)	mg/kg	0.1	<0.1	<0.1	200	0
		Halogenated	Dichlorodifluoromethane (CFC-12)	mg/kg	1	<1	<1	200	0
		Aliphatics	Chloromethane	mg/kg	1	<1	<1	200	0
			Vinyl chloride (Chloroethene)	mg/kg	0.1	<0.1	<0.1	200	0
			Bromomethane	mg/kg	1	<1	<1	200	0
			Chloroethane	mg/kg	1	<1	<1	200	0
			Trichlorofluoromethane	mg/kg	1	<1	<1	200	0
			Iodomethane	mg/kg	5	<5	<5	200	0
			1.1-dichloroethene	ma/ka	0.1	<0.1	<0.1	200	0
			Dichloromethane (Methylene chloride)	ma/ka	0.5	<0.5	<0.5	200	0
			Allyl chloride	mg/kg	0.1	<0.1	<0.1	200	0
			traps_1_2_dichloroethene	mg/kg	0.1	<0.1	<0.1	200	0
				mg/kg	0.1	<0.1	<0.1	200	0
				mg/kg	0.1	<0.1	<0.1	200	0
				mg/kg	0.1	<0.1	<0.1	200	0
				mg/kg	0.1	<0.1	<0.1	200	0
				mg/kg	0.1	<0.1	<0.1	200	0
			1,1,1-trichloroethane	mg/kg	0.1	<0.1	<0.1	200	0
			1,1-dichloropropene	mg/kg	0.1	<0.1	<0.1	200	0
			Carbon tetrachloride	mg/kg	0.1	<0.1	<0.1	200	0
			Dibromomethane	mg/kg	0.1	<0.1	<0.1	200	0
			Trichloroethene (Trichloroethylene -TCE)	mg/kg	0.1	<0.1	<0.1	200	0
			1,1,2-trichloroethane	mg/kg	0.1	<0.1	<0.1	200	0
			1,3-dichloropropane	mg/kg	0.1	<0.1	<0.1	200	0
			Tetrachloroethene (Perchloroethylene,PCE)	mg/kg	0.1	<0.1	<0.1	200	0
			1,1,1,2-tetrachloroethane	mg/kg	0.1	<0.1	<0.1	200	0
			cis-1,4-dichloro-2-butene	mg/kg	1	<1	<1	200	0
			1,1,2,2-tetrachloroethane	mg/kg	0.1	<0.1	<0.1	200	0
			1,2,3-trichloropropane	mg/kg	0.1	<0.1	<0.1	200	0
			trans-1,4-dichloro-2-butene	mg/kg	1	<1	<1	200	0
			1,2-dibromo-3-chloropropane	mg/kg	0.1	<0.1	<0.1	200	0
			Hexachlorobutadiene	mg/kg	0.1	<0.1	<0.1	200	0
		Halogenated	Chlorobenzene	ma/ka	0.1	<0.1	<0.1	200	0
		Aromatics	Bromobenzene	ma/ka	0.1	<0.1	<0.1	200	0
		, a official of	2-chlorotoluene	mg/kg	0.1	<0.1	<0.1	200	0
				mg/kg	0.1	-0.1	-0.1	200	
			1 3 dichlorobenzene	mg/kg	0.1	-0.1	<0.1	200	0
				mg/kg	0.1	-0.1	<0.1	200	0
				mg/kg	0.1	<0.1	<0.1	200	0
			1,2-aichlorobenzene	mg/kg	0.1	<0.1	<0.1	200	0
			1,2,4-trichlorobenzene	mg/kg	0.1	<0.1	<0.1	200	0
			1,2,3-trichlorobenzene	mg/kg	0.1	<0.1	<0.1	200	0
		Monocyclic	Benzene	mg/kg	0.1	<0.1	<0.1	200	0
		Aromatic	Toluene	mg/kg	0.1	<0.1	<0.1	200	0
			Ethylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			m/p-xylene	mg/kg	0.2	<0.2	<0.2	200	0



The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

VOC's in Soil (cont	tinued)						Meth	od: ME-(AU)-	(ENVJAN433
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE164357.010	LB122743.014	Monocyclic	o-xylene	mg/kg	0.1	<0.1	<0.1	200	0
		Aromatic	Styrene (Vinyl benzene)	mg/kg	0.1	<0.1	<0.1	200	0
			Isopropylbenzene (Cumene)	mg/kg	0.1	<0.1	<0.1	200	0
			n-propylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			1.3.5-trimethylbenzene	ma/ka	0.1	<0.1	<0.1	200	0
			tert-butylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			1 2 4-trimethylbenzene	ma/ka	0.1	<0.1	<0.1	200	0
			sec-hutylbenzene	ma/ka	0.1	<0.1	<0.1	200	0
			n-isopropyltoluene	mg/kg	0.1	<0.1	<0.1	200	0
			p-isopropyriolitene	mg/kg	0.1	<0.1	<0.1	200	0
		N124		iiig/kg	0.1	-0.1	<0.1	200	0
		Nitrogenous	Acryionitrile	mg/kg	0.1	<0.1	<0.1	200	0
		Compounds	2-nitropropane	mg/kg	10	<10	<10	200	0
		Oxygenated	Acetone (2-propanone)	mg/kg	10	<10	<10	200	0
		Compounds	MtBE (Methyl-tert-butyl ether)	mg/kg	0.1	<0.1	<0.1	200	0
			Vinyl acetate	mg/kg	10	<10	<10	200	0
			MEK (2-butanone)	mg/kg	10	<10	<10	200	0
			MIBK (4-methyl-2-pentanone)	mg/kg	1	<1	<1	200	0
			2-hexanone (MBK)	mg/kg	5	<5	<5	200	0
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
		Sulphonated	Carbon disulfide	mg/kg	0.5	<0.5	<0.5	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	3.6	3.7	50	3
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	3.6	3.8	50	6
			d8-toluene (Surrogate)	mg/kg	-	4.0	3.9	50	1
			Bromofluorobenzene (Surrogate)	mg/kg	-	4.2	4.2	50	0
		Totals	Total Xvlenes*	ma/ka	0.3	< 0.3	<0.3	200	0
			Total BTEX	ma/ka	0.6	<0.6	<0.3	200	0
				ma/ka	24	<24	<24	200	0
			Total Volatile Chlorinated Hydrocarbons*	mg/kg	3	<3.0	<3.0	200	0
				mg/kg	1.0	< 1.0	<1.0	200	0
				mg/kg	1.0	<1.0	<1.0	200	0
		Taile also as a the are		під/кд	1.0	<1.0	<1.0 -0.4	200	0
		Irinaiomethan		mg/kg	0.1	<0.1	<0.1	200	0
		es	Bromodichloromethane	mg/kg	0.1	<0.1	<0.1	200	0
			Chlorodibromomethane	mg/kg	0.1	<0.1	<0.1	200	0
			Bromoform	mg/kg	0.1	<0.1	<0.1	200	0
SE164360.001	LB122743.025	Fumigants	2,2-dichloropropane	mg/kg	0.1	<0.2	<0.2	200	0
			1,2-dichloropropane	mg/kg	0.1	<0.2	<0.2	200	0
			cis-1,3-dichloropropene	mg/kg	0.1	<0.2	<0.2	200	0
			trans-1,3-dichloropropene	mg/kg	0.1	<0.2	<0.2	200	0
			1,2-dibromoethane (EDB)	mg/kg	0.1	<0.2	<0.2	200	0
		Halogenated	Dichlorodifluoromethane (CFC-12)	mg/kg	1	<2	<2	200	0
		Aliphatics	Chloromethane	mg/kg	1	<2	<2	200	0
			Vinyl chloride (Chloroethene)	mg/kg	0.1	<0.2	<0.2	200	0
			Bromomethane	mg/kg	1	<2	<2	200	0
			Chloroethane	mg/kg	1	<2	<2	200	0
			Trichlorofluoromethane	mg/kg	1	<2	<2	200	0
			lodomethane	ma/ka	5	<10	<10	200	0
			1 1-dichloroethene	ma/ka	0.1	<0.2	<0.2	200	0
				mg/kg	0.5	<1.0	<1.0	200	0
				mg/kg	0.0	<0.2	<0.2	200	0
			trans 1.2 dishlaraathana	111g/Kg	0.1	-0.2	-0.2	200	0
				під/кд	0.1	~U.Z	~0.2	200	0
				mg/kg	0.1	<0.2	<0.2	200	0
			cis-1,2-dichloroethene	mg/kg	0.1	<0.2	<0.2	200	0
			Bromochloromethane	mg/kg	0.1	<0.2	<0.2	200	0
			1,2-dichloroethane	mg/kg	0.1	<0.2	<0.2	200	0
			1,1,1-trichloroethane	mg/kg	0.1	<0.2	<0.2	200	0
			1,1-dichloropropene	mg/kg	0.1	<0.2	<0.2	200	0
			Carbon tetrachloride	mg/kg	0.1	<0.2	<0.2	200	0
			Dibromomethane	mg/kg	0.1	<0.2	<0.2	200	0
			Trichloroethene (Trichloroethylene -TCE)	mg/kg	0.1	<0.2	<0.2	200	0
			1,1,2-trichloroethane	mg/kg	0.1	<0.2	<0.2	200	0
			1,3-dichloropropane	mg/kg	0.1	<0.2	<0.2	200	0



The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

VUU'S IN SOIL (CON							Metho	Ju: M⊑-(AU)-	t⊏invjAN433
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE164360.001	LB122743.025	Halogenated	Tetrachloroethene (Perchloroethylene,PCE)	mg/kg	0.1	<0.2	<0.2	200	0
		Aliphatics	1,1,1,2-tetrachloroethane	mg/kg	0.1	<0.2	<0.2	200	0
			cis-1,4-dichloro-2-butene	mg/kg	1	<2	<2	200	0
			1,1,2,2-tetrachloroethane	mg/kg	0.1	<0.2	<0.2	200	0
			1,2,3-trichloropropane	mg/kg	0.1	<0.2	<0.2	200	0
			trans-1,4-dichloro-2-butene	mg/kg	1	<2	<2	200	0
			1,2-dibromo-3-chloropropane	mg/kg	0.1	<0.2	<0.2	200	0
			Hexachlorobutadiene	mg/kg	0.1	<0.2	<0.2	200	0
		Halogenated	Chlorobenzene	mg/kg	0.1	<0.2	<0.2	200	0
		Aromatics	Bromobenzene	mg/kg	0.1	<0.2	<0.2	200	0
			2-chlorotoluene	mg/kg	0.1	<0.2	<0.2	200	0
			4-chlorotoluene	mg/kg	0.1	<0.2	<0.2	200	0
			1,3-dichlorobenzene	mg/kg	0.1	<0.2	<0.2	200	0
			1,4-dichlorobenzene	mg/kg	0.1	<0.2	<0.2	200	0
			1,2-dichlorobenzene	mg/kg	0.1	<0.2	<0.2	200	0
			1,2,4-trichlorobenzene	mg/kg	0.1	<0.2	<0.2	200	0
			1,2,3-trichlorobenzene	mg/kg	0.1	<0.2	<0.2	200	0
		Monocyclic	Benzene	mg/kg	0.1	<0.2	<0.2	200	0
		Aromatic	Toluene	ma/ka	0.1	<0.2	<0.2	135	0
			Ethylbenzene	ma/ka	0.1	0.8	0.7	43	9
			m/p-xylene		0.2	<0.4	<0.4	83	0
			o-xvlene	ma/ka	0.1	<0.2	<0.2	200	0
			Styrene (Vinyl benzene)	ma/ka	0.1	<0.2	<0.2	200	0
			Isopropylbenzene (Cumene)	ma/ka	0.1	11	11	31	4
			n-propylhenzene	ma/ka	0.1	51	44	30	15
			1 3 5-trimethylbenzene	ma/ka	0.1	<1.1	<1.1	40	0
			tert-hutvlhenzene	ma/ka	0.1	<0.2	<0.2	200	0
			1.2.4-trimethylbenzene	ma/ka	0.1	<0.2	<0.2	61	0
			sec-butylbenzene	ma/ka	0.1	10	10	31	3
			n-isonropyltoluene	ma/ka	0.1	<0.2	<0.2	200	0
			p-isopiopyiloidene	ma/ka	0.1	18	21	31	15
		Nitrogopous	Applopitrilo	mg/kg	0.1	<0.2	<0.2	200	0
		Compounds		mg/kg	10	<0.2	<0.2	200	0
		Compounds		mg/kg	10	<20	<20	200	0
		Compounds	MADE (Mathul test but d ather)	mg/kg	0.1	<20	<20	200	0
		Compounds	Mibe (Methyl-tert-butyl ether)	mg/kg	0.1	<0.2	<0.2	200	0
				Hig/kg	10	<20	<20	200	0
			MEK (2-butanone)	mg/kg	10	<20	<20	200	0
			MIBK (4-methyl-2-pentanone)	mg/kg	- 1	<2	<2	200	0
			2-nexanone (MBK)	mg/kg	5	<10	<10	200	0
				mg/kg	0.1	43	45	30	5
		Supronated		mg/kg	0.5	<1.0	<1.0	200	U
		Surrogates		mg/kg	-	3.8	3.8	50	1
			u4-1,2-dichloroethane (Surrogate)	mg/kg	-	3.6	3.9	50	0
			d8-toluene (Surrogate)	mg/kg	-	3.5	3.5	50	1
			Bromotiuorobenzene (Surrogate)	mg/kg	-	6.2	6.4	50	4
		Totals	l otal Xylenes*	mg/kg	0.3	<0.6	<0.6	100	0
				mg/kg	0.6	1.3	1.3	53	5
				mg/kg	24	140	130	48	2
			Total Volatile Chlorinated Hydrocarbons*	mg/kg	3	<6.0	<6.0	200	0
			I otal Chlorinated Hydrocarbons VIC EPA*	mg/kg	1.8	<3.6	<3.6	200	0
			I otal Other Chlorinated Hydrocarbons VIC EPA*	mg/kg	1.8	<3.6	<3.6	200	0
		Trihalomethan	Chloroform	mg/kg	0.1	<0.2	<0.2	200	0
		es	Bromodichloromethane	mg/kg	0.1	<0.2	<0.2	200	0
			Chlorodibromomethane	mg/kg	0.1	<0.2	<0.2	200	0
			Bromoform	mg/kg	0.1	<0.2	<0.2	200	0
Volatile Petroleum	Hydrocarbons in Soil						Metho	od: ME-(AU)-	(ENVJAN433
Original	Duplicate		Parameter	Units	L <u>OR</u>	Original	Dupl <u>icate</u>	Criteria %	RP <u>D %</u>
SE164357.010	LB122743.014		TRH C6-C10	mg/kg	25	<25	<25	200	0
			TRH C6-C9	ma/ka	20	<20	<20	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	3.6	3.7	30	1



The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Volatile Petroleum	Hydrocarbons in So	il (continued)					Meth	od: ME-(AU)-	[ENV]AN433
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE164357.010	LB122743.014	Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.1	4.2	30	2
			d8-toluene (Surrogate)	mg/kg	-	4.0	4.2	30	4
			Bromofluorobenzene (Surrogate)	mg/kg		4.1	4.2	30	2
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	<0.1	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	200	0
SE164360.001	LB122743.025		TRH C6-C10	mg/kg	25	370	400	36	7
			TRH C6-C9	mg/kg	20	130	140	44	7
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	3.7	3.7	30	1
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	3.8	4.1	30	7
			d8-toluene (Surrogate)	mg/kg	-	3.6	3.7	30	5
			Bromofluorobenzene (Surrogate)	mg/kg	-	3.6	3.7	30	2
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.2	<0.2	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	370	400	36	7



Method: ME-(AU)-[ENV]AN420

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury in Soil					N	/lethod: ME-(A	U)-[ENV]AN312
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB122741.002	Mercury	mg/kg	0.05	0.19	0.2	70 - 130	97

OC Pesticides in Soil

Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB122637.002		Heptachlor	mg/kg	0.1	0.2	0.2	60 - 140	124
		Aldrin	mg/kg	0.1	0.2	0.2	60 - 140	121
		Delta BHC	mg/kg	0.1	0.2	0.2	60 - 140	124
		Dieldrin	mg/kg	0.2	0.2	0.2	60 - 140	117
		Endrin	mg/kg	0.2	0.2	0.2	60 - 140	123
		p,p'-DDT	mg/kg	0.1	0.2	0.2	60 - 140	124
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.16	0.15	40 - 130	107
PAH (Polynuclear A	vromatic Hydroca	rbons) in Soli				1	Method: ME-(A	U)-[ENV]AN42
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB122637.002		Naphthalene	mg/kg	0.1	4.4	4	60 - 140	109
		Acenaphthylene	mg/kg	0.1	4.4	4	60 - 140	109
		Acenaphthene	mg/kg	0.1	4.5	4	60 - 140	112
		Phenanthrene	mg/kg	0.1	4.6	4	60 - 140	114
		Anthracene	mg/kg	0.1	4.5	4	60 - 140	113
		Fluoranthene	mg/kg	0.1	4.6	4	60 - 140	115
		Pyrene	mg/kg	0.1	4.5	4	60 - 140	112
		Benzo(a)pyrene	mg/kg	0.1	5.0	4	60 - 140	124
	Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	104
		2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	96
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	90
PCBs in Soil						I	Method: ME-(A	U)-[ENV]AN42
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB122637.002		Arochlor 1260	mg/kg	0.2	0.4	0.4	60 - 140	106

Total Recoverable	Metals in Soil/Waste Solids/Materials by ICPOES Method: ME-(AU)-[ENV]AN0						VJAN040/AN320		
Sample Number		Parameter		Units	LOR	Result	Expected	Criteria %	Recovery %
LB122772.002		Arsenic, As		mg/kg	3	48	50	80 - 120	95
		Cadmium, Cd		mg/kg	0.3	49	50	80 - 120	97
		Chromium, Cr		mg/kg	0.3	46	50	80 - 120	93
		Copper, Cu		mg/kg	0.5	48	50	80 - 120	96
		Lead, Pb		mg/kg	1	49	50	80 - 120	97
		Nickel, Ni		mg/kg	0.5	48	50	80 - 120	96
		Zinc, Zn		mg/kg	0.5	47	50	80 - 120	94
Trace Metals (Diss	olved) in Water by	ICPMS					N	lethod: ME-(A	U)-[ENV]AN318
Sample Number		Parameter		Units	LOR	Result	Expected	Criteria %	Recovery %
LB122616.002		Arsenic, As		µg/L	1	20	20	80 - 120	100
		Cadmium, Cd		µg/L	0.1	21	20	80 - 120	107
		Chromium, Cr		µg/L	1	23	20	80 - 120	113
		Copper, Cu		µg/L	1	23	20	80 - 120	113
		Lead, Pb		µg/L	1	22	20	80 - 120	110
		Nickel, Ni		µg/L	1	22	20	80 - 120	109
		Zinc, Zn		µg/L	5	21	20	80 - 120	107
TRH (Total Recove	rable Hydrocarbo	ns) in Soil					N	lethod: ME-(A	U)-[ENV]AN403
Sample Number		Parameter		Units	LOR	Result	Expected	Criteria %	Recovery %
LB122637.002		TRH C10-C14		mg/kg	20	38	40	60 - 140	95
		TRH C15-C28		mg/kg	45	<45	40	60 - 140	93
		TRH C29-C36		mg/kg	45	<45	40	60 - 140	88
	TRH F Bands	TRH >C10-C16 (F2)		mg/kg	25	39	40	60 - 140	98
		TRH >C16-C34 (F3)		mg/kg	90	<90	40	60 - 140	93
		TRH >C34-C40 (F4)		mg/kg	120	<120	20	60 - 140	95



SE164358 R0

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

VOC's in Soil							vethod: ME-(A	U)-[ENV]AN433
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB122743.002	Halogenated	1,1-dichloroethene	mg/kg	0.1	2.2	2.56	60 - 140	84
	Aliphatics	1,2-dichloroethane	mg/kg	0.1	2.8	2.56	60 - 140	108
		Trichloroethene (Trichloroethylene -TCE)	mg/kg	0.1	1.8	2.56	60 - 140	71
	Halogenated	Chlorobenzene	mg/kg	0.1	2.7	2.56	60 - 140	105
	Monocyclic	Benzene	mg/kg	0.1	2.8	2.9	60 - 140	95
	Aromatic	Toluene	mg/kg	0.1	2.4	2.9	60 - 140	83
		Ethylbenzene	mg/kg	0.1	2.2	2.9	60 - 140	77
		m/p-xylene	mg/kg	0.2	4.8	5.8	60 - 140	83
		o-xylene	mg/kg	0.1	2.6	2.9	60 - 140	91
	Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.1	5	60 - 140	82
		d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.6	5	60 - 140	93
		d8-toluene (Surrogate)	mg/kg	-	4.7	5	60 - 140	94
		Bromofluorobenzene (Surrogate)	mg/kg	-	4.9	5	60 - 140	97
	Trihalomethan	Chloroform	mg/kg	0.1	2.3	2.56	60 - 140	90
VOCs in Water						N	Nethod: ME-(A	U)-[ENV]AN43
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB122640.002	Monocyclic	Benzene	µg/L	0.5	51	45.45	60 - 140	112
	Aromatic	Toluene	µg/L	0.5	51	45.45	60 - 140	111
		Ethylbenzene	µg/L	0.5	51	45.45	60 - 140	112
		m/p-xylene	µg/L	1	100	90.9	60 - 140	111
		o-xylene	µg/L	0.5	51	45.45	60 - 140	111
	Surrogates	Dibromofluoromethane (Surrogate)	µg/L	-	5.0	5	60 - 140	100
		d4-1,2-dichloroethane (Surrogate)	µg/L	-	5.2	5	60 - 140	105
		d8-toluene (Surrogate)	µg/L	-	5.2	5	60 - 140	104
		Bromofluorobenzene (Surrogate)	µg/L	-	4.8	5	60 - 140	97
Volatile Petroleum I	lydrocarbons in S	loil				N	Nethod: ME-(A	U)-[ENV]AN43
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB122743.002		TRH C6-C10	mg/kg	25	<25	24.65	60 - 140	83
		TRH C6-C9	mg/kg	20	20	23.2	60 - 140	87
	Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.3	5	60 - 140	87
		d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.4	5	60 - 140	88
		d8-toluene (Surrogate)	mg/kg	-	4.8	5	60 - 140	97
		Bromofluorobenzene (Surrogate)	mg/kg	-	4.4	5	60 - 140	87
	VPH F Bands	TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	7.25	60 - 140	79



## **MATRIX SPIKES**

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury (dissolve	od) in Water				Me	thod: ME-(AU)-	ENVJAN31	1(Perth)/AN312
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE164357.013	LB122864.004	Mercury	mg/L	0.0001	0.0079	<0.0001	0.008	100

### Mercury in Soil

Mercury in Soil						Me	thod: ME-(Al	J)-[ENV]AN312
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE164358.001	LB122741.004	Mercury	mg/kg	0.05	0.17	<0.05	0.2	86

Total Recoverab	le Metals in Soil/Was	te Solids/Materials	s by ICPOES				Method: ME	E-(AU)-[ENV	AN040/AN320
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE164358.001	LB122772.004		Arsenic, As	mg/kg	3	45	6	50	77
			Cadmium, Cd	mg/kg	0.3	45	0.3	50	90
			Chromium, Cr	mg/kg	0.3	61	30	50	63 (9)
			Copper, Cu	mg/kg	0.5	46	0.7	50	90
			Lead, Pb	mg/kg	1	62	20	50	84
			Nickel, Ni	mg/kg	0.5	45	<0.5	50	88
			Zinc, Zn	mg/kg	0.5	46	3.3	50	86
Trace Metals (Di	issolved) in Water by	ICPMS					Met	hod: ME-(AL	)-[ENV]AN318
QC Sample	Sample Number	,	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE164247.001	LB122616.004		Cadmium, Cd	µg/L	0.1	21	<0.1	20	106
			Copper, Cu	μg/L	1	19	<1	20	93
			Lead, Pb	µg/L	1	21	<1	20	105
			Nickel, Ni	μg/L	1	20	<1	20	95
			Zinc, Zn	µg/L	5	70	52	20	90
TRH (Total Reco	overable Hydrocarbor	ns) in Soll					Met	hod: ME-(AL	)-[ENV]AN403
QC Sample	Sample Number	•	Parameter	Units	LOR	Original	Spike	Recovery%	6
SE164357.001	LB122637.026		TRH C10-C14	mg/kg	20	<20	40	95	
			TRH C15-C28	mg/kg	45	<45	40	98	
			TRH C29-C36	mg/kg	45	<45	40	83	
			TRH C37-C40	mg/kg	100	<100	-	-	
			TRH C10-C36 Total	mg/kg	110	<110	-	-	
			TRH C10-C40 Total	mg/kg	210	<210	-	-	
		TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	<25	40	98	
			TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	-	-	
			TRH >C16-C34 (F3)	mg/kg	90	<90	40	95	
			TRH >C34-C40 (F4)	mg/kg	120	<120	-	-	
VOC's in Soil							Met	hod: ME-(AL	)-[ENV]AN433
QC Sample	Sample Number	,	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE164357.001	LB122743.004	Fumigants	2,2-dichloropropane	mg/kg	0.1	<0.1	<0.1	-	-
			1,2-dichloropropane	mg/kg	0.1	<0.1	<0.1	-	-
			cis-1,3-dichloropropene	mg/kg	0.1	<0.1	<0.1	-	-
			trans-1,3-dichloropropene	mg/kg	0.1	<0.1	<0.1	-	-
			1,2-dibromoethane (EDB)	mg/kg	0.1	<0.1	<0.1	-	-
		Halogenated	Dichlorodifluoromethane (CFC-12)	mg/kg	1	<1	<1	-	-
		Aliphatics	Chloromethane	mg/kg	1	<1	<1	-	-
			Vinyl chloride (Chloroethene)	mg/kg	0.1	<0.1	<0.1	-	-
			Bromomethane	mg/kg	1	<1	<1	-	-
			Chloroethane	mg/kg	1	<1	<1	-	-
			Trichlorofluoromethane	mg/kg	1	<1	<1	-	-
			lodomethane	mg/kg	5	<5	<5	-	-
			1,1-dichloroethene	mg/kg	0.1	1.9	<0.1	2.56	73
			Dichloromethane (Methylene chloride)	mg/kg	0.5	<0.5	<0.5	-	-
			Allyl chloride	mg/kg	0.1	<0.1	<0.1	-	-
			trans-1,2-dichloroethene	mg/kg	0.1	<0.1	<0.1	-	-
			1,1-dichloroethane	mg/kg	0.1	<0.1	<0.1	-	-
			cis-1,2-dichloroethene	mg/kg	0.1	<0.1	<0.1	-	-
			Bromochloromethane	mg/kg	0.1	<0.1	<0.1	-	-



## **MATRIX SPIKES**

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

	Comula Numb		Devenueder			Desult	Oniminal		Decement
QC Sample	Sample Numb	er	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE164357.001	LB122743.004	Halogenated	1,2-dichloroethane	mg/kg	0.1	2.2	<0.1	2.56	85
		Aliphatics	1,1,1-trichloroethane	mg/kg	0.1	<0.1	<0.1	-	-
			1,1-dichloropropene	mg/kg	0.1	<0.1	<0.1	-	-
			Carbon tetrachloride	mg/kg	0.1	<0.1	<0.1	-	-
			Dibromomethane	mg/kg	0.1	<0.1	<0.1	-	-
			Trichloroethene (Trichloroethylene -TCE)	mg/kg	0.1	1.8	<0.1	2.56	71
			1,1,2-trichloroethane	mg/kg	0.1	<0.1	<0.1	-	-
			1,3-dichloropropane	mg/kg	0.1	<0.1	<0.1	-	-
			Tetrachloroethene (Perchloroethylene,PCE)	mg/kg	0.1	<0.1	<0.1	-	-
			1,1,1.2-tetrachloroethane	mg/kg	0.1	<0.1	<0.1	-	-
			cis-1.4-dichloro-2-butene	ma/ka	1	<1	<1	-	-
			1 1 2 2-tetrachloroethane	ma/ka	0.1	<0.1	<0.1	_	-
				mg/kg	0.1	<0.1	<0.1	_	
				mg/kg	0.1	-0.1	-0.1	-	
				mg/kg		< <u> </u>	< <u> </u>	-	-
			1,2-dibromo-3-chloropropane	mg/kg	0.1	<0.1	<0.1	-	-
			Hexachlorobutadiene	mg/kg	0.1	<0.1	<0.1	-	-
		Halogenated	Chlorobenzene	mg/kg	0.1	2.4	<0.1	2.56	92
		Aromatics	Bromobenzene	mg/kg	0.1	<0.1	<0.1	-	-
			2-chlorotoluene	mg/kg	0.1	<0.1	<0.1	-	-
			4-chlorotoluene	mg/kg	0.1	<0.1	<0.1	-	-
			1,3-dichlorobenzene	mg/kg	0.1	<0.1	<0.1	-	-
			1,4-dichlorobenzene	mg/kg	0.1	<0.1	<0.1	-	-
			1,2-dichlorobenzene	mg/kg	0.1	<0.1	<0.1	-	-
			1,2,4-trichlorobenzene	mg/kg	0.1	<0.1	<0.1	-	-
			1.2.3-trichlorobenzene	ma/ka	0.1	<0.1	<0.1	-	-
		Monocyclic	Benzene	ma/ka	0.1	2.6	<0.1	29	88
		Aromatic	Toluene	mg/kg	0.1	2.0	<0.1	2.0	74
		Alomatic	Ethulhonzono	mg/kg	0.1	2.2	<0.1	2.0	60
				mg/kg	0.1	2.0	<0.1	2.9	70
			m/p-xyiene	mg/kg	0.2	4.4	<0.2	5.8	73
			o-xylene	mg/kg	0.1	2.4	<0.1	2.9	81
			Styrene (Vinyl benzene)	mg/kg	0.1	<0.1	<0.1	-	-
			Isopropylbenzene (Cumene)	mg/kg	0.1	<0.1	<0.1	-	-
			n-propylbenzene	mg/kg	0.1	<0.1	<0.1	-	-
			1,3,5-trimethylbenzene	mg/kg	0.1	<0.1	<0.1	-	-
			tert-butylbenzene	mg/kg	0.1	<0.1	<0.1	-	-
			1,2,4-trimethylbenzene	mg/kg	0.1	<0.1	<0.1	-	-
			sec-butylbenzene	mg/kg	0.1	<0.1	<0.1	-	-
			p-isopropyltoluene	mg/kg	0.1	<0.1	<0.1	-	-
			n-butylbenzene	ma/ka	0.1	<0.1	<0.1	-	-
		Nitrogenous	Acrylonitrile	ma/ka	0.1	<0.1	<0.1	-	-
		Compounds		mg/kg	10	<10	<10		
		Owgonated		mg/kg	10	<10	<10	-	
		Campacitated		під/кд	10	>10	>10	-	-
		Compounds		mg/kg	0.1	<0.1	<0.1	-	-
				mg/kg	10	<10	<10	-	-
			MEK (2-butanone)	mg/kg	10	<10	<10	-	-
			MIBK (4-methyl-2-pentanone)	mg/kg	1	<1	<1	-	-
			2-hexanone (MBK)	mg/kg	5	<5	<5	-	-
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	<0.1	-	-
		Sulphonated	Carbon disulfide	mg/kg	0.5	<0.5	<0.5	-	-
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	3.7	4.0	-	74
		-	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.1	3.9	-	81
			d8-toluene (Surrogate)	mg/kg	-	3.9	4.0	-	77
			Bromofluorobenzene (Surrogate)	ma/ka	-	4.5	4.2	-	90
		Totals	Total Xvlenes*	ma/ka	0.3	67	<0.3	-	-
			Total BTEX	mg/kg	0.0	12	-0.0- <0.6		
				тіу/ку	0.0	13	~U.D	-	-
				mg/kg	24	24	<24	-	-
				mg/kg	3	<3.0	<3.0	-	-
			Total Chlorinated Hydrocarbons VIC EPA*	mg/kg	1.8	11	<1.8	-	-
			Total Other Chlorinated Hydrocarbons VIC EPA*	mg/kg	1.8	11	<1.8	-	-
		Trihalometha	Chloroform	mg/kg	0.1	2.5	<0.1	2.56	97
		nes	Bromodichloromethane	mg/kg	0.1	<0.1	<0.1	-	-



### **MATRIX SPIKES**

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

### VOC's in Soil (continued) Method: ME-(AU)-[ENV]AN433 QC Sample Sample Number Parameter Units LOR Result Original Spike Recovery% SE164357.001 LB122743.004 Trihalometha Chlorodibromomethane mg/kg 0.1 <0.1 < 0.1 Bromoform mg/kg 0.1 <0.1 <0.1 nes Volatile Petroleum Hydrocarbons in Soil Method: ME-(AU)-[ENV]AN433 QC Sample Sample Number LOR Result Original Spike Recovery% Parameter Units SE164357.001 LB122743.004 TRH C6-C10 mg/kg 25 <25 <25 24.65 81 TRH C6-C9 20 <20 <20 23.2 68 mg/kg Dibromofluoromethane (Surrogate) 4.4 3.5 87 Surrogates mg/kg d4-1,2-dichloroethane (Surrogate) mg/kg 41 3.7 82 d8-toluene (Surrogate) mg/kg 4.1 4.0 82 4.2 Bromofluorobenzene (Surrogate) 3.9 78 mg/kg -VPH F Benzene (F0) mg/kg 0.1 2.6 <0.1 --Bands TRH C6-C10 minus BTEX (F1) mg/kg 25 <25 <25 7.25 93



The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.



Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service .
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- O LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to Analytical Report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.



## SAMPLE RECEIPT ADVICE

- CLIENT DETAILS	3	LABORATORY DETAILS			
Contact	Craig Cowper	Manager	Huong Crawford		
Client	SLR CONSULTING AUSTRALIA PTY LTD	Laboratory	SGS Alexandria Environmental		
Address	Lego Building, 2 Lincoln Street (PO Box 176 NSW LANECOVE 1595) LANECOVE NSW 2066	Address	Unit 16, 33 Maddox St Alexandria NSW 2015		
Telephone	02 9427 8100	Telephone	+61 2 8594 0400		
Facsimile	02 9427 8200	Facsimile	+61 2 8594 0499		
Email	ccowper@slrconsulting.com	Email	au.environmental.sydney@sgs.com		
Project	610.17038 St Ives	Samples Received	Wed 19/4/2017		
Order Number	22498	Report Due	Thu 27/4/2017		
Samples	15	SGS Reference	SE164358		

_ SUBMISSION DETAILS

This is to confirm that 15 samples were received on Wednesday 19/4/2017. Results are expected to be ready by Thursday 27/4/2017. Please quote SGS reference SE164358 when making enquiries. Refer below for details relating to sample integrity upon receipt.

- Samples clearly labelled Sample container provider Samples received in correct containers Date documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested
- Yes SGS Yes 19/4/2017 Yes 4.0°C Standard

Complete documentation received Sample cooling method Sample counts by matrix Type of documentation received Samples received without headspace Sufficient sample for analysis Yes Ice 12 Soil, 3 Water COC Yes Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015

SW 2015 Aus SW 2015 Aus

Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au


__ CLIENT DETAILS _

#### Client SLR CONSULTING AUSTRALIA PTY LTD

Project 610.17038 St lves

- 5	SUMMARY OF ANALYSIS													
	No.	Sample ID	OC Pesticides in Soil	PAH (Polynuclear Aromatic Hydrocarbons) in Soil	PCBs in Soil	Total Recoverable Metals in Soil/Waste	TRH (Total Recoverable Hydrocarbons) in Soil	VOC's in Soil	Volatile Petroleum Hydrocarbons in Soil					
	001	BH01/0.1-0.3	-	26	-	7	10	12	8					
	002	BH02/0.15-0.35	-	26	-	7	10	82	8					
	003	BH02/0.5-0.7	-	-	-	7	-	-	-					
	004	BH03/0.3-0.5	28	26	-	7	10	12	8					
	005	BH03/0.6-0.8	-	-	-	7	-	-	-					
	006	BH04/0.4-0.6	-	26	11	7	10	82	8					
	007	BH04/0.6-0.8	-	26	-	-	10	12	8					
	008	BH05/0.2-0.4	-	26	11	7	10	12	8					
	009	BH06/0.3-0.5	28	26	-	7	10	12	8					
	010	BH06/0.7-0.9	-	26	-	7	-	-	-					
	011	DUP01	-	-	-	7	-	-	-					
	012	DUP01A	-	-	-	7	-	-	-					

_ CONTINUED OVERLEAF



__ CLIENT DETAILS __

#### Client SLR CONSULTING AUSTRALIA PTY LTD

Project 610.17038 St lves

-	SUMMARY	OF ANALYSIS					
	No.	Sample ID	Fibre Identification in soil	Mercury in Soil	Moisture Content	VOCs in Water	
	001	BH01/0.1-0.3	-	1	1	-	
	002	BH02/0.15-0.35	1	1	1	-	
	003	BH02/0.5-0.7	-	1	1	-	
	004	BH03/0.3-0.5	1	1	1	-	
	005	BH03/0.6-0.8	-	1	1	-	
	006	BH04/0.4-0.6	1	1	1	-	
	007	BH04/0.6-0.8	-	-	1	-	
	008	BH05/0.2-0.4	1	1	1	-	
	009	BH06/0.3-0.5	1	1	1	-	
	010	BH06/0.7-0.9	-	1	1	-	
	011	DUP01	-	1	1	-	
	012	DUP01A	-	1	1	-	
	014	Trip Spike	-	-	-	12	
	015	Trip Blank	-	-	-	12	

_ CONTINUED OVERLEAF



### SAMPLE RECEIPT ADVICE

#### __ CLIENT DETAILS __

#### Client SLR CONSULTING AUSTRALIA PTY LTD

Project 610.17038 St Ives

- SUMMARY	OF ANALYSIS	 	
No.	Sample ID	Mercury (dissolved) in Water	Trace Metals (Dissolved) in Water by ICPMS
013	RB01	1	7

SGS	SGS Environmental Services				С	HAI	N C	OF C	ะบร	τοε	)Y 8	AN	IAL	YSI	IS	REQUEST					Pa	ge1	of _	_2	
SGS Environmental Se	ervices	Com	oany N	lame	e:	SLR C	Consu	Iting							Pr	roject Name/No:	610.	17038	St Ive	es					
Unit 16, 33 Maddox St	reet	Addr	ess:			2 Linc	oln St	reet							Pu	urchase Order No:	SGS	S PO 2	2498	Euro	fins PC	D 22499			
Alexandria NSW 2015						Lane	Cove	NSW 2	2066						Re	esults Required By	: Star	ndard &	5 day t	urnar	round				
Telephone No: (02) 85	940400														Te	elephone:	0400	0 882 :	269						
Facsimile No: (02) 85	940499	Cont	act Na	ime:		Craig	Cowp	er							Fa	acsimile:	02 9	427 8	200						
Email: au.samplereceipt.sy	dney@sgs.com	1													En	mail Results:	CCOV	vper@	slrcon	sultir	ng.com	1			
Client Sample ID	Date Sampled	Lab Sampl ID	e	WATER	SOIL	PRESERVATIVE	NO OF CONTAINERS	TRH / BTEX	РАН	OCP	PCB	VOC (8260)	Metals (8)	Asbestos (Absence / Presence)	Presence)	pHF and pHFox							Notes	S	
BH01/0.1-0.3	18/04/17	1			Х	Ice	2	X	X		1		X												
BH02/0.15-0.35	18/04/17	2			Х	Ice	2	X	Х		1	X	х	X			1	1	1	1			1		
BH02/0.5-0.7	18/04/17	3			Х	Ice	2				1		х				SGS		lexan	dria	Labor	atory			
BH03/0.3-0.5	18/04/17	4			Х	Ice	2	X	X	X	1		х	X				11 III III III III III III III III III							
BH03/0.6-0.8	18/04/17	5			Х	Ice	2						Х												
BH04/0.4-0.6	18/04/17	6			Х	lce	2	х	X		x	X	Х	X			SE1	164	358	CC	C				
BH04/0.6-0.8	18/04/17	7			Х	Ice	2	x	Х								Recei	ved:	19 - A	pr-1	2017				
BH05/0.2-0.4	18/04/17	E			Х	lce	2	х	X		X		X	X			ĩ	T	1	T			)		
BH06/0.3-0.5	18/04/17	9			Х	lce	2	x	X	X			X	X										-	
BH06/0.7-0.9	18/04/17	10			Х	Ice	2		Х				Х												
Relinquished By: Craig Cowper			Date/1	Time	: 19/0	04/201	7@	0930			F	Receiv	ed By	/:		I		Date/	Time						
Relinquished By:		Date/1	Time	:			-1			F	Receiv	/ed By	/: 🦯	1A	tkun,		Date	Time	19	PLI	17	(=	10		
Samples Intact: (es) No		Temp	eratu	ure:	Ambie	ent / C	hilled	6	5°C	5	Sampl	e Coo	ler Se	eale	led: Yes/No		Labo	ratory	Quo	tation	No: SLF	R Pricing	g 2015		
		Comm	nents	s: Me	thods	and c	letectio	on limi	ts to s	uit NE	PM 20	013 ar	nd AN	NZE	ECC2000		Lab (	Quotat	ion N	No: Eui	rofins V	ersion 1	3.CS2		

SGS	SGS Environmental Services			С	HAI	N C	OF C	บรา	ΓΟΕ	)Y 8	& AN	IAL	YSI	SF	REQ	UEST					Page _	_2 of	_2
SGS Environmental S	ervices	Compan	y Nam	e:	SLR (	Consu	Iting							Proj	ject Nar	me/No:	610.	17038	St Ives	s			
Unit 16, 33 Maddox St	reet	Address:			2 Linc	oln St	reet							Pure	chase (	Order No:	SGS	S PO 22	2498 E	Eurofin	s PO 224	99	
Alexandria NSW 2015				-	Lane	Cove	NSW 2	2066						Res	sults Re	quired By:	Star	dard 5	day tu	Irnarou	Ind		
Telephone No: (02) 85	940400			-										Tele	ephone:		0400	882 2	69				
Facsimile No: (02) 85	940499	Contact	Name:	-	Craig	Cowp	er							Fac	simile:		02 9	427 82	00				
Email: au.samplereceipt.sy	dney@sgs.com			-										Ema	ail Resu	ults:	CCOV	vper@s	sircons	sulting.	com		
Client Sample ID	Date Sampled	Lab Sample ID	WATER	SOIL	PRESERVATIVE	NO OF CONTAINERS	TRH / BTEX	РАН	OCP	PCB	VOC (8260)	Metals (8)	Asbestos (Absence / Dresence)	pHF and pHFox	BTEX			Notes					
DUP01	18/04/17	11		X	Ice	1						X											
DUP01A	18/04/17	12		X	lce	1						X											
RB01	18/04/17	12	X		Ice	4		-				X											
Trip Spike	18/04/17	14	X		Ice	1									X								
Trip Blank	18/04/17	15	X		Ice	1									X								
																							-
Relinquished By: Craig Cowper			e/Time	e: 19/0	04/201	7@(	)930				Receiv	/ed By	/:		10-1			Date/1	Time		1		_
Relinquished By:	Dat	e/Time	э:			5				Receiv	/ed By	/:	1	AKi	W		Date/T	Time	19	14/7	- 1	1=10	
Samples Intact: Yes/ No Temperature				ure:	Ambie	ent / C	hilled	C	PC	/	Sampl	e Coo	ler Se	ealec	d: Yes	/ No		Labora	atory C	Quotat	ion No: S	LR Pricing	2015
	Cor	nment	s: Me	thods	and d	etectio	on limi	ts to s	uit NE	EPM 2	013 ar	nd AN	IZEC	C2000	)		Lab Q	uotatio	on No:	Eurofins	Version 13	3.CS2	



### **ANALYTICAL REPORT**





	LABORATORY DE	TAILS
Craig Cowper	Manager	Huong Crawford
SLR CONSULTING AUSTRALIA PTY LTD	Laboratory	SGS Alexandria Environmental
Lego Building, 2 Lincoln Street (PO Box 176 NSW LANECOVE 1595) LANECOVE NSW 2066	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
02 9427 8100	Telephone	+61 2 8594 0400
02 9427 8200	Facsimile	+61 2 8594 0499
ccowper@slrconsulting.com	Email	au.environmental.sydney@sgs.com
610.17035 St Ives	SGS Reference	SE164550 R0
22525	Date Received	24/4/2017
2	Date Reported	2/5/2017
	Craig Cowper SLR CONSULTING AUSTRALIA PTY LTD Lego Building, 2 Lincoln Street (PO Box 176 NSW LANECOVE 1595) LANECOVE NSW 2066 02 9427 8100 02 9427 8200 ccowper@slrconsulting.com 610.17035 St Ives 22525 2	Craig Cowper       Manager         SLR CONSULTING AUSTRALIA PTY LTD       Laboratory         Lego Building, 2 Lincoln Street       Address         (PO Box 176 NSW LANECOVE 1595)       LANECOVE NSW 2066         02 9427 8100       Telephone         02 9427 8200       Facsimile         ccowper@slrconsulting.com       Email         610.17035 St lves       SGS Reference         22525       Date Received         2       Date Reported

- COMMENTS

Accredited for compliance with ISO/IEC 17025-Testing. NATA accredited laboratory 2562(4354).

SIGNATORIES -

Ady Sitte

Andy Sutton Senior Organic Chemist

Kinta

Ly Kim Ha Organic Section Head

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC

Dong Liang

Metals/Inorganics Team Leader

Alexandria NSW 2015 Alexandria NSW 2015

/ 2015 Aust / 2015 Aust

Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

Kamrul Ahsan

Senior Chemist

www.sgs.com.au



### VOCs in Water [AN433] Tested: 28/4/2017

			MW01	MW02
			WATER	WATER
	ПОМ	LOR	24/4/2017	24/4/2017
Benzene	ua/L	0.5	<0.5	<0.5
Toluene	µg/L	0.5	1.4	0.9
Ethylbenzene	μg/L	0.5	<0.5	<0.5
m/p-xylene	μg/L	1	<1	<1
o-xylene	µg/L	0.5	<0.5	<0.5
Total Xylenes	µg/L	1.5	<1.5	<1.5
Total BTEX	µg/L	3	<3	<3
Naphthalene	µg/L	0.5	<0.5	<0.5
Dichlorodifluoromethane (CFC-12)	µg/L	5	<5	<5
Chloromethane	µg/L	5	<5	<5
Vinyl chloride (Chloroethene)	µg/L	0.3	<0.3	<0.3
Bromomethane	µg/L	10	<10	<10
Chloroethane	µg/L	5	<5	<5
Trichlorofluoromethane	µg/L	1	<1	<1
Acetone (2-propanone)	µg/L	10	<10	<10
Iodomethane	µg/L	5	<5	<5
1,1-dichloroethene	µg/L	0.5	<0.5	<0.5
Acrylonitrile	µg/L	0.5	<0.5	<0.5
Dichloromethane (Methylene chloride)	µg/L	5	<5	<5
Allyl chloride	µg/L	2	<2	<2
Carbon disulfide	µg/L	2	<2	<2
trans-1,2-dichloroethene	µg/L	0.5	<0.5	<0.5
MtBE (Methyl-tert-butyl ether)	µg/L	2	<2	<2
1,1-dichloroethane	µg/L	0.5	<0.5	<0.5
Vinyl acetate	µg/L	10	<10	<10
MEK (2-butanone)	µg/L	10	<10	<10
cis-1,2-dichloroethene	µg/L	0.5	<0.5	<0.5
Bromochloromethane	µg/L	0.5	<0.5	<0.5
Chloroform (THM)	µg/L	0.5	<0.5	0.7
2,2-dichioropropane	µg/L	0.5	<0.5	<0.5
1,2-dichloroethane	µg/L	0.5	<0.5	<0.5
1,1,1-tricnioroetnane	µg/L	0.5	<0.5	<0.5
	µg/L	0.5	<0.5	<0.5
	µg/L	0.5	<0.5	<0.5
	µg/L	0.5	<0.5	<0.5
	µg/L	0.5	<0.5	<0.5
2-nitronronane	µg/L	100	<100	<100
Bromodichloromethane (THM)	ug/l	0.5	<0.5	<0.5
MIBK (4-methyl-2-pentanone)	ua/L	5	<5	<5
cis-1,3-dichloropropene	µg/L	0.5	<0.5	<0.5
trans-1,3-dichloropropene	µg/L	0.5	<0.5	<0.5
1,1,2-trichloroethane	μg/L	0.5	<0.5	<0.5
1,3-dichloropropane	µg/L	0.5	<0.5	<0.5
Dibromochloromethane (THM)	μg/L	0.5	<0.5	<0.5
2-hexanone (MBK)	µg/L	5	<5	<5
1,2-dibromoethane (EDB)	µg/L	0.5	<0.5	<0.5
Tetrachloroethene (Perchloroethylene,PCE)	µg/L	0.5	<0.5	<0.5
1,1,1,2-tetrachloroethane	µg/L	0.5	<0.5	<0.5
Chlorobenzene	µg/L	0.5	<0.5	<0.5
Bromoform (THM)	µg/L	0.5	<0.5	<0.5
cis-1,4-dichloro-2-butene	µg/L	1	<1	<1
Styrene (Vinyl benzene)	µg/L	0.5	<0.5	<0.5
1,1,2,2-tetrachloroethane	µg/L	0.5	<0.5	<0.5
1,2,3-trichloropropane	µg/L	0.5	<0.5	<0.5
trans-1,4-dichloro-2-butene	µg/L	1	<1	<1



### VOCs in Water [AN433] Tested: 28/4/2017 (continued)

			MW01	MW02
			WATER -	WATER -
			24/4/2017	24/4/2017
PARAMETER	UOM	LOR	SE164550.001	SE164550.002
Isopropylbenzene (Cumene)	µg/L	0.5	<0.5	<0.5
Bromobenzene	µg/L	0.5	<0.5	<0.5
n-propylbenzene	µg/L	0.5	<0.5	<0.5
2-chlorotoluene	µg/L	0.5	<0.5	<0.5
4-chlorotoluene	µg/L	0.5	<0.5	<0.5
1,3,5-trimethylbenzene	µg/L	0.5	<0.5	<0.5
tert-butylbenzene	µg/L	0.5	<0.5	<0.5
1,2,4-trimethylbenzene	µg/L	0.5	<0.5	<0.5
sec-butylbenzene	µg/L	0.5	<0.5	<0.5
1,3-dichlorobenzene	µg/L	0.5	<0.5	<0.5
1,4-dichlorobenzene	µg/L	0.3	<0.3	<0.3
p-isopropyltoluene	µg/L	0.5	<0.5	<0.5
1,2-dichlorobenzene	µg/L	0.5	<0.5	<0.5
n-butylbenzene	µg/L	0.5	<0.5	<0.5
1,2-dibromo-3-chloropropane	µg/L	0.5	<0.5	<0.5
1,2,4-trichlorobenzene	µg/L	0.5	<0.5	<0.5
Hexachlorobutadiene	µg/L	0.5	<0.5	<0.5
1,2,3-trichlorobenzene	µg/L	0.5	<0.5	<0.5
Total VOC	µg/L	10	<10	<10



### Volatile Petroleum Hydrocarbons in Water [AN433] Tested: 28/4/2017

			MW01	MW02
			WATER	WATER
			24/4/2017	24/4/2017
PARAMETER	UOM	LOR	SE164550.001	SE164550.002
TRH C6-C9	μg/L	40	<40	<40
Benzene (F0)	μg/L	0.5	<0.5	<0.5
TRH C6-C10	μg/L	50	<50	<50
TRH C6-C10 minus BTEX (F1)	μg/L	50	<50	<50



### SE164550 R0

### TRH (Total Recoverable Hydrocarbons) in Water [AN403] Tested: 28/4/2017

			MW01	MW02
			WATER	WATER
			- 24/4/2017	- 24/4/2017
PARAMETER	UOM	LOR	SE164550.001	SE164550.002
TRH C10-C14	µg/L	50	<50	<50
TRH C15-C28	µg/L	200	<200	<200
TRH C29-C36	µg/L	200	<200	<200
TRH C37-C40	µg/L	200	<200	<200
TRH >C10-C16 (F2)	µg/L	60	<60	<60
TRH >C16-C34 (F3)	µg/L	500	<500	<500
TRH >C34-C40 (F4)	µg/L	500	<500	<500
TRH C10-C36	µg/L	450	<450	<450
TRH C10-C40	µg/L	650	<650	<650



### Low Level PAH (Poly Aromatic Hydrocarbons) in Water [AN420] Tested: 28/4/2017

			MW01	MW02
			WATER	WATER
DID INFTED		1.05	24/4/2017	24/4/2017
PARAMETER	UOM	LOR	SE164550.001	SE164550.002
Naphthalene	µg/L	0.02	0.05	0.02
2-methylnaphthalene	µg/L	0.01	0.01	<0.01
1-methylnaphthalene	µg/L	0.01	<0.01	<0.01
Acenaphthylene	µg/L	0.01	<0.01	<0.01
Acenaphthene	µg/L	0.01	<0.01	<0.01
Fluorene	µg/L	0.01	<0.01	<0.01
Phenanthrene	µg/L	0.01	0.01	<0.01
Anthracene	µg/L	0.01	<0.01	<0.01
Fluoranthene	µg/L	0.01	<0.01	<0.01
Pyrene	µg/L	0.01	<0.01	<0.01
Benzo(a)anthracene	µg/L	0.01	<0.01	<0.01
Chrysene	µg/L	0.01	<0.01	<0.01
Benzo(b&j&k)fluoranthene	µg/L	0.02	<0.02	<0.02
Benzo(a)pyrene	µg/L	0.01	<0.01	<0.01
Indeno(1,2,3-cd)pyrene	µg/L	0.01	<0.01	<0.01
Dibenzo(ah)anthracene	µg/L	0.01	<0.01	<0.01
Benzo(ghi)perylene	µg/L	0.01	<0.01	<0.01
Carcinogenic PAHs (as BaP TEQ) - assume non detects	TEQ	0.012	<0.012	<0.012
Total PAH VIC EPA Guidelines (16)*	µg/L	0.1	<0.1	<0.1
Total PAH (18)*	µg/L	0.1	<0.1	<0.1



### Trace Metals (Dissolved) in Water by ICPMS [AN318] Tested: 27/4/2017

			MW01	MW02
			WATER	WATER
			24/4/2017	24/4/2017
PARAMETER	UOM	LOR	SE164550.001	SE164550.002
Arsenic, As	µg/L	1	19	<1
Cadmium, Cd	µg/L	0.1	17	1.0
Chromium, Cr	µg/L	1	2	<1
Copper, Cu	µg/L	1	370	88
Lead, Pb	µg/L	1	1	<1
Nickel, Ni	µg/L	1	240	19
Zinc, Zn	µg/L	5	2100	110



### Mercury (dissolved) in Water [AN311(Perth)/AN312] Tested: 1/5/2017

			MW01	MW02
			WATER	WATER
			24/4/2017	24/4/2017
PARAMETER	UOM	LOR	SE164550.001	SE164550.002
Mercury	mg/L	0.0001	<0.0001	<0.0001



METHOD	METHODOLOGY SUMMARY
AN020	Unpreserved water sample is filtered through a 0.45µm membrane filter and acidified with nitric acid similar to APHA3030B.
AN311(Perth)/AN312	Mercury by Cold Vapour AAS in Waters: Mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500.
AN318	Determination of elements at trace level in waters by ICP-MS technique, in accordance with USEPA 6020A.
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). Where F2 is corrected for Naphthalene, the VOC data for Naphthalene is used.
AN403	Additionally, the volatile C6-C9/C6-C10 fractions may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Recoveerable Hydrocarbons - Silica (TRH-Silica) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.
AN403	The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.
AN420	PAH Compounds: The determination the concentration of polynuclear aromatic hydrocarbons (PAH) in solid waste matrices, soils and waters by Gas Chromatography with Mass Spectrometric Detection (Based on USEPA 3500C and 8270D).
AN420	Carcinogenic PAHs may be expressed as Benzo(a)pyrene equivalents by applying the BaP toxicity equivalence factor (NEPM 1999, June 2013, B7). These can be reported as the individual PAHs and as a sum of carcinogenic PAHs. The sum is reported three ways, the first assuming all <lor <lor="" all="" and="" are="" assuming="" half="" lor="" lor.<="" results="" second="" td="" the="" third="" zero,=""></lor>
AN433	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.



#### FOOTNOTES -

NATA accreditation does not cover the performance of this service. Indicative data, theoretical holding time exceeded.

Not analysed. NVL IS I NR

Not validated. Insufficient sample for analysis. Sample listed, but not received.

UOM LOR î↓

Unit of Measure. Limit of Reporting. Raised/lowered Limit of Reporting.

Samples analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-OU-022%20OA%20OC 20Plan.pdf

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

This report must not be reproduced, except in full.



## STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS		LABORATORY DETAI	LS	
Contact	Craig Cowper	Manager	Huong Crawford	
Client	SLR CONSULTING AUSTRALIA PTY LTD	Laboratory	SGS Alexandria Environmental	
Address	Lego Building, 2 Lincoln Street (PO Box 176 NSW LANECOVE 1595) LANECOVE NSW 2066	Address	Unit 16, 33 Maddox St Alexandria NSW 2015	
Telephone	02 9427 8100	Telephone	+61 2 8594 0400	
Facsimile	02 9427 8200	Facsimile	+61 2 8594 0499	
Email	ccowper@slrconsulting.com	Email	au.environmental.sydney@sgs.com	
Project	610.17035 St Ives	SGS Reference	SE164550 R0	
Order Number	22525	Date Received	24 Apr 2017	
Samples	2	Date Reported	02 May 2017	

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document and was supplied by the Client. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Matrix Spike

Trace Metals (Dissolved) in Water by ICPMS

1 item

Samples clearly labelled	Yes	Complete documentation received	Yes	
Sample container provider	SGS	Sample cooling method	Ice Bricks	
Samples received in correct containers	Yes	Sample counts by matrix	2 Water	
Date documentation received	24/4/2017	Type of documentation received	COC	
Samples received in good order	Yes	Samples received without headspace	Yes	
Sample temperature upon receipt	7.0°C	Sufficient sample for analysis	Yes	
Turnaround time requested	Standard			

SGS Australia Pty Ltd ABN 44 000 964 278

SAMPLE SUMMARY

Environment, Health and Safety

Unit 16 33 Maddox St Alexandria NSW 2015 PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Australia t +61 2 8594 0400 Australia

www.sgs.com.au f +61 2 8594 0499



SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Low Level PAH (Poly Aromati	ic Hydrocarbons) in Wat	ter					Method:	ME-(AU)-[ENV]AN420
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
MW01	SE164550.001	LB123078	24 Apr 2017	24 Apr 2017	01 May 2017	28 Apr 2017	07 Jun 2017	02 May 2017
MW02	SE164550.002	LB123078	24 Apr 2017	24 Apr 2017	01 May 2017	28 Apr 2017	07 Jun 2017	02 May 2017
Mercury (dissolved) in Water							Method: ME-(AU)-[ENV	]AN311(Perth)/AN312
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
MW01	SE164550.001	LB123155	24 Apr 2017	24 Apr 2017	22 May 2017	01 May 2017	22 May 2017	02 May 2017
MW02	SE164550.002	LB123155	24 Apr 2017	24 Apr 2017	22 May 2017	01 May 2017	22 May 2017	02 May 2017
Trace Metals (Dissolved) in W	ater by ICPMS						Method:	ME-(AU)-[ENV]AN318
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
MW01	SE164550.001	LB122972	24 Apr 2017	24 Apr 2017	21 Oct 2017	27 Apr 2017	21 Oct 2017	27 Apr 2017
MW02	SE164550.002	LB122972	24 Apr 2017	24 Apr 2017	21 Oct 2017	27 Apr 2017	21 Oct 2017	27 Apr 2017
TRH (Total Recoverable Hydr	ocarbons) in Water						Method:	ME-(AU)-[ENV]AN403
TRH (Total Recoverable Hydr Sample Name	rocarbons) in Water Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Method: Analysis Due	ME-(AU)-[ENV]AN403 Analysed
TRH (Total Recoverable Hydr Sample Name MW01	ocarbons) in Water Sample No. SE164550.001	QC Ref LB123078	Sampled 24 Apr 2017	Received 24 Apr 2017	Extraction Due 01 May 2017	Extracted 28 Apr 2017	Method: Analysis Due 07 Jun 2017	ME-(AU)-[ENV]AN403 Analysed 02 May 2017
TRH (Total Recoverable Hydr Sample Name MW01 MW02	ocarbons) In Water Sample No. SE164550.001 SE164550.002	QC Ref LB123078 LB123078	Sampled 24 Apr 2017 24 Apr 2017	Received 24 Apr 2017 24 Apr 2017	Extraction Due 01 May 2017 01 May 2017	Extracted 28 Apr 2017 28 Apr 2017	Method: Analysis Due 07 Jun 2017 07 Jun 2017	ME-(AU)-[ENV]AN403 Analysed 02 May 2017 02 May 2017
TRH (Total Recoverable Hydr Sample Name MW01 MW02 VOCs in Water	ocarbons) in Water Sample No. SE164550.001 SE164550.002	QC Ref LB123078 LB123078	Sampled 24 Apr 2017 24 Apr 2017	Received 24 Apr 2017 24 Apr 2017	Extraction Due 01 May 2017 01 May 2017	Extracted 28 Apr 2017 28 Apr 2017	Method: Analysis Due 07 Jun 2017 07 Jun 2017 Method:	ME-(AU)-[ENV]AN403 Analysed 02 May 2017 02 May 2017 ME-(AU)-[ENV]AN433
TRH (Total Recoverable Hydr Sample Name MW01 MW02 VOCs in Water Sample Name	ocarbons) in Water Sample No. SE164550.001 SE164550.002 Sample No.	QC Ref LB123078 LB123078 QC Ref	Sampled 24 Apr 2017 24 Apr 2017 Sampled	Received 24 Apr 2017 24 Apr 2017 Received	Extraction Due 01 May 2017 01 May 2017 Extraction Due	Extracted 28 Apr 2017 28 Apr 2017 Extracted	Method: Analysis Due 07 Jun 2017 07 Jun 2017 Method: Analysis Due	ME-(AU)-(ENV)AN403 Analysed 02 May 2017 02 May 2017 ME-(AU)-(ENV)AN433 Analysed
TRH (Total Recoverable Hydr Sample Name MW01 WW02 VOCs in Water Sample Name MW01	ocarbons) in Water Sample No. SE164550.001 SE164550.002 Sample No. SE164550.001	QC Ref LB123078 LB123078 QC Ref LB123077	Sampled 24 Apr 2017 24 Apr 2017 Sampled 24 Apr 2017	Received 24 Apr 2017 24 Apr 2017 Received 24 Apr 2017	Extraction Due 01 May 2017 01 May 2017 Extraction Due 01 May 2017	Extracted 28 Apr 2017 28 Apr 2017 Extracted 28 Apr 2017	Method: Analysis Due 07 Jun 2017 07 Jun 2017 Method: Analysis Due 07 Jun 2017	ME-(AU)-[ENV]AN403 Analysed 02 May 2017 02 May 2017 ME-(AU)-[ENV]AN433 Analysed 01 May 2017
TRH (Total Recoverable Hydr Sample Name MW01 WW02 VOCs in Water Sample Name MW01 MW02	ocarbons) in Water Sample No. SE164550.001 SE164550.002 Sample No. SE164550.001 SE164550.001	QC Ref LB123078 LB123078 QC Ref LB123077 LB123077	Sampled 24 Apr 2017 24 Apr 2017 24 Apr 2017 24 Apr 2017 24 Apr 2017	Received 24 Apr 2017 24 Apr 2017 24 Apr 2017 24 Apr 2017 24 Apr 2017	Extraction Due 01 May 2017 01 May 2017 Extraction Due 01 May 2017 01 May 2017	Extracted 28 Apr 2017 28 Apr 2017 Extracted 28 Apr 2017 28 Apr 2017	Method:           Analysis Due           07 Jun 2017           07 Jun 2017           Method:           Analysis Due           07 Jun 2017           Or Jun 2017	ME-(AU)-[ENV]AN403 Analysed 02 May 2017 02 May 2017 ME-(AU)-[ENV]AN433 Analysed 01 May 2017 01 May 2017
TRH (Total Recoverable Hydr Sample Name MW01 MW02 VOCs in Water Sample Name MW01 MW02 Volatile Petroleum Hydrocarb	Cocarbons) in Water Sample No. SE164550.001 SE164550.002 Sample No. SE164550.001 SE164550.001 SE164550.002 ons in Water	QC Ref LB123078 LB123078 QC Ref LB123077 LB123077	Sampled           24 Apr 2017           24 Apr 2017           Sampled           24 Apr 2017           24 Apr 2017           24 Apr 2017           24 Apr 2017	Received           24 Apr 2017	Extraction Due           01 May 2017           01 May 2017           Extraction Due           01 May 2017           01 May 2017	Extracted 28 Apr 2017 28 Apr 2017 Extracted 28 Apr 2017 28 Apr 2017	Method: Analysis Due 07 Jun 2017 07 Jun 2017 Method: 07 Jun 2017 07 Jun 2017 Method:	ME-(AU)-[ENV]AN403 Analysed 02 May 2017 02 May 2017 ME-(AU)-[ENV]AN433 Analysed 01 May 2017 01 May 2017 ME-(AU)-[ENV]AN433
TRH (Total Recoverable Hydr Sample Name MW01 MW02 VOCs in Water Sample Name MW01 MW02 Volatile Petroleum Hydrocarb Sample Name	Cocarbons) in Water Sample No. SE164550.001 SE164550.002 Sample No. SE164550.001 SE164550.002 Ons in Water Sample No.	QC Ref LB123078 LB123078 QC Ref LB123077 LB123077 QC Ref	Sampled           24 Apr 2017           24 Apr 2017           Sampled           24 Apr 2017           24 Apr 2017           24 Apr 2017           24 Apr 2017           Sampled	Received 24 Apr 2017 24 Apr 2017 24 Apr 2017 24 Apr 2017 24 Apr 2017 24 Apr 2017 Received	Extraction Due 01 May 2017 01 May 2017 Extraction Due 01 May 2017 01 May 2017 Extraction Due	Extracted 28 Apr 2017 28 Apr 2017 Extracted 28 Apr 2017 28 Apr 2017 28 Apr 2017 Extracted	Method: Analysis Due 07 Jun 2017 07 Jun 2017 Method: 07 Jun 2017 07 Jun 2017 Method: Analysis Due	ME-(AU)-[ENV]AN403 Analysed 02 May 2017 02 May 2017 ME-(AU)-[ENV]AN433 Analysed 01 May 2017 01 May 2017 ME-(AU)-[ENV]AN433 Analysed
TRH (Total Recoverable Hydr Sample Name MW01 MW02 VOCs in Water Sample Name MW01 MW02 Volatile Petroleum Hydrocarb Sample Name MW01	Cocarbons) in Water Sample No. SE 164550.001 SE 164550.002 Sample No. SE 164550.002 SE 164550.002 Cons in Water Sample No. SE 164550.001	QC Ref LB123078 LB123078 QC Ref LB123077 LB123077 QC Ref LB123077	Sampled           24 Apr 2017           24 Apr 2017           Sampled           24 Apr 2017           24 Apr 2017	Received           24 Apr 2017           24 Apr 2017	Extraction Due           01 May 2017           01 May 2017           Extraction Due           01 May 2017           01 May 2017           Extraction Due           01 May 2017           01 May 2017           01 May 2017           01 May 2017	Extracted 28 Apr 2017 28 Apr 2017 Extracted 28 Apr 2017 28 Apr 2017 28 Apr 2017 Extracted 28 Apr 2017	Method:           Analysis Due           07 Jun 2017           07 Jun 2017           Method:           Analysis Due           07 Jun 2017           07 Jun 2017           Method:           Analysis Due           07 Jun 2017           Method:           Analysis Due           07 Jun 2017           Method:           Analysis Due           07 Jun 2017	ME-(AU)-[ENV]AN403 Analysed 02 May 2017 02 May 2017 ME-(AU)-[ENV]AN433 Analysed 01 May 2017 ME-(AU)-[ENV]AN433 Analysed 01 May 2017



### **SURROGATES**

Method: ME-(AU)-[ENV]AN420

Method: ME-(AU)-[ENV]AN433

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

#### Low Level PAH (Poly Aromatic Hydrocarbons) in Water

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
2-fluorobiphenyl (Surrogate)	MW01	SE164550.001	%	40 - 130%	NA
	MW02	SE164550.002	%	40 - 130%	NA
d14-p-terphenyl (Surrogate)	MW01	SE164550.001	%	40 - 130%	56
	MW02	SE164550.002	%	40 - 130%	48
d5-nitrobenzene (Surrogate)	MW01	SE164550.001	%	40 - 130%	NA
	MW02	SE164550.002	%	40 - 130%	NA

VOCs in Water

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	MW01	SE164550.001	%	40 - 130%	101
	MW02	SE164550.002	%	40 - 130%	106
d4-1,2-dichloroethane (Surrogate)	MW01	SE164550.001	%	40 - 130%	96
	MW02	SE164550.002	%	40 - 130%	115
d8-toluene (Surrogate)	MW01	SE164550.001	%	40 - 130%	96
	MW02	SE164550.002	%	40 - 130%	86
Dibromofluoromethane (Surrogate)	MW01	SE164550.001	%	40 - 130%	107
	MW02	SE164550.002	%	40 - 130%	126

#### Volatile Petroleum Hydrocarbons in Water

			Method: M	E-(AU)-[ENV]AN433
Sample Name	Sample Number	Units	Criteria	Recovery %
MW01	SE164550.001	%	40 - 130%	91
MW02	SE164550.002	%	40 - 130%	104
MW01	SE164550.001	%	60 - 130%	100
MW02	SE164550.002	%	60 - 130%	119
MW01	SE164550.001	%	40 - 130%	97
MW02	SE164550.002	%	40 - 130%	86
MW01	SE164550.001	%	40 - 130%	102
MW02	SE164550.002	%	40 - 130%	123
	Sample Name           MW01           MW02           MW01           MW02           MW01           MW02           MW01           MW02           MW02           MW02           MW01           MW02	Sample Name         Sample Number           MW01         SE164550.001           MW02         SE164550.002           MW01         SE164550.001           MW02         SE164550.002           MW01         SE164550.002           MW02         SE164550.002           MW01         SE164550.002           MW01         SE164550.002           MW02         SE164550.002           MW01         SE164550.002           MW01         SE164550.002           MW02         SE164550.002	Sample Name         Sample Number         Units           MW01         SE164550.001         %           MW02         SE164550.002         %           MW01         SE164550.001         %           MW02         SE164550.001         %           MW01         SE164550.002         %           MW02         SE164550.002         %           MW01         SE164550.001         %           MW02         SE164550.002         %           MW01         SE164550.001         %           MW02         SE164550.001         %           MW02         SE164550.002         %	Sample Name         Sample Number         Units         Criteria           MW01         SE164550.001         %         40 - 130%           MW02         SE164550.002         %         40 - 130%           MW01         SE164550.002         %         60 - 130%           MW02         SE164550.002         %         60 - 130%           MW02         SE164550.002         %         60 - 130%           MW01         SE164550.002         %         40 - 130%           MW02         SE164550.002         %         40 - 130%           MW01         SE164550.001         %         40 - 130%           MW02         SE164550.002         %         40 - 130%           MW02         SE164550.002         %         40 - 130%



### **METHOD BLANKS**

### SE164550 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury

#### Low Level PAH (Poly Aromatic Hydrocarbons) in Water

Low Level PAH (Poly Aromatic Hydrocarbons) in Water			Metho	od: ME-(AU)-[ENV]AN420
Sample Number	Parameter	Units	LOR	Result
LB123078.001	Naphthalene	μg/L	0.02	<0.02
	2-methylnaphthalene	μg/L	0.01	<0.01
	1-methylnaphthalene	μg/L	0.01	<0.01
	Acenaphthylene	μg/L	0.01	<0.01
	Acenaphthene	μg/L	0.01	<0.01
	Fluorene	μg/L	0.01	<0.01
	Phenanthrene	μg/L	0.01	<0.01
	Anthracene	μg/L	0.01	<0.01
	Fluoranthene	μg/L	0.01	<0.01
	Pyrene	μg/L	0.01	<0.01
	Benzo(a)anthracene	μg/L	0.01	<0.01
	Chrysene	μg/L	0.01	<0.01
	Benzo(b&j&k)fluoranthene	μg/L	0.02	<0.02
	Benzo(a)pyrene	μg/L	0.01	<0.01
	Indeno(1,2,3-cd)pyrene	μg/L	0.01	<0.01
	Dibenzo(ah)anthracene	μg/L	0.01	<0.01
	Benzo(ghi)perylene	μg/L	0.01	<0.01
Surrogates	d14-p-terphenyl (Surrogate)	%	-	104
Mercury (dissolved) in Water			Method: ME-(AU)-[E	ENV]AN311(Perth)/AN312
Sample Number	Parameter	Unite	LOR	Result

#### Trace Metals (Dissolved) in Water by ICPMS

LB123155.001

Trace Metals (Dissolved) in Water by ICPMS			Meth	od: ME-(AU)-[ENV]AN318
Sample Number	Parameter	Units	LOR	Result
LB122972.001	Arsenic, As	μg/L	1	<1
	Cadmium, Cd	µg/L	0.1	<0.1
	Chromium, Cr	µg/L	1	<1
	Copper, Cu	µg/L	1	<1
	Lead, Pb	µg/L	1	<1
	Nickel, Ni	µg/L	1	<1
	Zinc, Zn	μg/L	5	<5
TRH (Total Recoverable Hydrocarbons) in Water			Meth	od: ME-(AU)-IENVIAN403

mg/L

0.0001

<0.0001

#### LOR Sample Number Parameter Result LB123078.001 TRH C10-C14 µg/L 50 <50 TRH C15-C28 200 <200 µg/L TRH C29-C36 200 µg/L <200 TRH C37-C40 200 <200 µg/L

VOCs in Water				Metho	d: ME-(AU)-[ENV]AN433
Sample Number		Parameter	Units	LOR	Result
LB123077.001	Fumigants	2,2-dichloropropane	 µg/L	0.5	<0.5
		1,2-dichloropropane	 µg/L	0.5	<0.5
		cis-1,3-dichloropropene	 µg/L	0.5	<0.5
		trans-1,3-dichloropropene	 µg/L	0.5	<0.5
		1,2-dibromoethane (EDB)	µg/L	0.5	<0.5
	Halogenated Aliphatics	Dichlorodifluoromethane (CFC-12)	 µg/L	5	<5
		Chloromethane	µg/L	5	<5
		Vinyl chloride (Chloroethene)	µg/L	0.3	<0.3
		Bromomethane	μg/L	10	<10
		Chloroethane	µg/L	5	<5
		Trichlorofluoromethane	µg/L	1	<1
		Iodomethane	 μg/L	5	<5
		1,1-dichloroethene	 μg/L	0.5	<0.5
		Dichloromethane (Methylene chloride)	 μg/L	5	<5
		Allyl chloride	 μg/L	2	<2
		trans-1,2-dichloroethene	 μg/L	0.5	<0.5
		1,1-dichloroethane	 μg/L	0.5	<0.5
		cis-1,2-dichloroethene	 μg/L	0.5	<0.5
		Bromochloromethane	µg/L	0.5	<0.5



### **METHOD BLANKS**

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

VOCs in Water (continu	ied)			Me	ethod: ME-(AU)-[ENV]AN433
Sample Number		Parameter	Units	LOR	Result
LB123077.001	Halogenated Aliphatics	1,2-dichloroethane	μg/L	0.5	<0.5
		1,1,1-trichloroethane	μg/L	0.5	<0.5
		1,1-dichloropropene	µg/L	0.5	<0.5
		Carbon tetrachloride	µg/L	0.5	<0.5
		Dibromomethane	µg/L	0.5	<0.5
		Trichloroethene (Trichloroethylene,TCE)	μg/L	0.5	<0.5
		1,1,2-trichloroethane	µg/L	0.5	<0.5
		1,3-dichloropropane	ug/L	0.5	<0.5
		Tetrachloroethene (Perchloroethylene,PCE)	ua/L	0.5	<0.5
		1.1.1.2-tetrachloroethane	µo/	0.5	<0.5
		cis-1.4-dichloro-2-butene	µa/l	1	<1
		1 1 2 2-tetrachloroethane		0.5	<0.5
		1 2 3-trichloropropage	P9'	0.5	<0.5
		trans-1 4-dichloro-2-butene		1	
		12 dibromo-3 chloropropage		0.5	<0.5
		Haveshlershutadiona	µg/L	0.5	<0.5
	Helegeneted Aremetics	Chlerohonzono	μg/L	0.5	<0.5
	Halogenated Aromatics		µg/∟	0.5	-0.5
		Bromobenzene	μg/L	0.5	<0.5
		2-chlorotoluene	µg/L	0.5	<0.5
		4-chlorotoluene	µg/L	0.5	<0.5
		1,3-dichlorobenzene	µg/L	0.5	<0.5
		1,4-dichlorobenzene	μg/L	0.3	<0.3
		1,2-dichlorobenzene	μg/L	0.5	<0.5
		1,2,4-trichlorobenzene	μg/L	0.5	<0.5
		1,2,3-trichlorobenzene	μg/L	0.5	<0.5
	Monocyclic Aromatic	Benzene	μg/L	0.5	<0.5
	Hydrocarbons	Toluene	μg/L	0.5	<0.5
		Ethylbenzene	µg/L	0.5	<0.5
		m/p-xylene	µg/L	1	<1
		o-xylene	µg/L	0.5	<0.5
		Styrene (Vinyl benzene)	μg/L	0.5	<0.5
		Isopropylbenzene (Cumene)	μg/L	0.5	<0.5
		n-propylbenzene	µg/L	0.5	<0.5
		1,3,5-trimethylbenzene	µg/L	0.5	<0.5
		tert-butylbenzene	μg/L	0.5	<0.5
		1,2,4-trimethylbenzene	μg/L	0.5	<0.5
		sec-butylbenzene	µg/L	0.5	<0.5
		p-isopropyltoluene	µg/L	0.5	<0.5
		n-butylbenzene	µg/L	0.5	<0.5
	Nitrogenous Compounds	Acrylonitrile	µg/L	0.5	<0.5
	Oxygenated Compounds	Acetone (2-propanone)	µg/L	10	<10
		MtBE (Methyl-tert-butyl ether)	ug/L	2	<2
		Vinvl acetate	ua/L	10	<10
		MEK (2-butanone)	µa/l	10	<10
		MIBK (4-methyl-2-pentanone)		5	<5
		2-bevanone (MBK)	P9'	5	<5
F S S	Polycyclic VOCs	Nanhthalene		0.5	<0.5
	Sulphonated			2	
	Surrogatas	Dibromeflueremethene (Surregete)	µg/L	2	109
	Surroyates	d4 1 2 diablaracthana (Surragata)	/0		05
			/0		95
			70		95
		Bromotiuorobenzene (Surrogate)	%		102
	i rinaiometnanes		μg/L	0.5	<0.5
		Bromodichloromethane (THM)	μg/L	0.5	<0.5
		Dibromochloromethane (THM)	μg/L	0.5	<0.5
		Bromotorm (THM)	μg/L	0.5	<0.5
Volatile Petroleum Hydr	rocarbons in Water			Mo	ethod: ME-(AU)-[ENV]AN433
Sample Number		Parameter	Units	LOR	



### **METHOD BLANKS**

### SE164550 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

#### Volatile Petroleum Hydrocarbons in Water (continued)

Method: ME-(AU)-[ENV]AN433 Parameter Units LOR Result

Sample Number		Parameter	Units	LOR	Result
LB123077.001		TRH C6-C9	μg/L	40	<40
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	103
		d4-1,2-dichloroethane (Surrogate)	%	-	99
		d8-toluene (Surrogate)	%	-	102
		Bromofluorobenzene (Surrogate)	%	-	95



Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

	······································								
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE164564.085	LB122972.014		Arsenic, As	μg/L	1	<1	<1	161	0
			Cadmium, Cd	µg/L	0.1	<0.1	<0.1	200	0
			Chromium, Cr	µg/L	1	<1	<1	200	0
			Copper Cu		1	<1	<1	129	0
			Lead Ph	pg,	1	-1	-1	200	0
			Leau, FD	μg/L	4	~ 1		200	
				μg/L	-	2		80	
			Zinc, Zn	µg/L	5	<5	<5	200	0
VOCs in Water							Meth	od: ME-(AU)-[	ENVJAN43
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE164466.002	L B122077 021	Eumigente			0.5	<0 F	0	200	0
SE 104400.003	LB123077.021	Fumigants		µg/L	0.5	<0.5	0	200	
			1,2-dichloropropane	µg/L	0.5	<0.5	0	200	0
			cis-1,3-dichloropropene	μg/L	0.5	<0.5	0	200	0
			trans-1,3-dichloropropene	µg/L	0.5	<0.5	0	200	0
			1,2-dibromoethane (EDB)	μg/L	0.5	<0.5	0	200	0
		Halogenated	Dichlorodifluoromethane (CFC-12)	µg/L	5	<5	0	200	0
		Aliphatics	Chloromethane	µg/L	5	<5	0	200	0
			Vinyl chloride (Chloroethene)	µg/L	0.3	<0.3	0	200	0
			Bromomethane		10	<10	0	200	0
			Chloroothana	P9-2	5	<5	0	200	
				µg/L		~5	0	200	
			Irichlorofluoromethane	μg/L	1	<1	0	200	0
			lodomethane	μg/L	5	<5	0	200	0
			1,1-dichloroethene	µg/L	0.5	<0.5	0	200	0
			Dichloromethane (Methylene chloride)	μg/L	5	<5	0	200	0
			Allyl chloride	µg/L	2	<2	0	200	0
			trans-1,2-dichloroethene	µg/L	0.5	<0.5	0	200	0
			1.1-dichloroethane	ug/L	0.5	<0.5	0	200	0
			cis-1 2-dichloroethene		0.5	<0.5	0	200	
			Branachlaramethana	μg/L	0.5	<0.5	0	200	
			A Q distance	μg/L	0.5	<0.5	0	200	0
			1,2-dichloroethane	μg/L	0.5	<0.5	0	200	0
			1,1,1-trichloroethane	μg/L	0.5	<0.5	0	200	0
			1,1-dichloropropene	µg/L	0.5	<0.5	0	200	0
			Carbon tetrachloride	μg/L	0.5	<0.5	0	200	0
			Dibromomethane	µg/L	0.5	<0.5	0	200	0
			Trichloroethene (Trichloroethylene,TCE)	µg/L	0.5	<0.5	0	200	0
			1,1,2-trichloroethane	µg/L	0.5	<0.5	0	200	0
			1.3-dichloropropage		0.5	<0.5	0	200	0
			Tetraphereethere (Berehlereethylere BCE)	P9-2	0.5	<0.5	0	200	
				μg/L	0.5	-0.5	0	200	
			1,1,1,2-tetracnioroetnane	μg/L	0.5	<0.5	0	200	
			cis-1,4-dichloro-2-butene	μg/L	1	<1	0	200	0
			1,1,2,2-tetrachloroethane	µg/L	0.5	<0.5	0	200	0
			1,2,3-trichloropropane	μg/L	0.5	<0.5	0	200	0
			trans-1,4-dichloro-2-butene	μg/L	1	<1	0	200	0
			1,2-dibromo-3-chloropropane	µg/L	0.5	<0.5	0	200	0
			Hexachlorobutadiene	ug/L	0.5	<0.5	0	200	0
		Halogenated	Chlorohenzene		0.5	<0.5	0	200	0
		Aromatics	Bromobenzene	pg/c	0.5	<0.5	0	200	0
		Alomatics	2 eklesetelvere	μg/L	0.5	<0.5	0	200	
			2-chlorotoluene	μg/L	0.5	<0.5	0	200	
			4-chlorotoluene	μg/L	0.5	<0.5	0	200	0
			1,3-dichlorobenzene	µg/L	0.5	<0.5	0	200	0
			1,4-dichlorobenzene	µg/L	0.3	<0.3	0	200	0
			1,2-dichlorobenzene	µg/L	0.5	<0.5	0	200	0
			1,2,4-trichlorobenzene	µg/L	0.5	<0.5	0	200	0
			1,2,3-trichlorobenzene	µg/L	0.5	<0.5	0	200	0
		Monocvclic	Benzene	ua/L	0.5	<0.5	0.07	200	0
		Aromatic	Toluene		0.5	<0.5	0.00	200	
		, conduc	Ethylhonzono	P9/L	0.5	-0.0	0.42	200	
			Luyibenzene	µg/L	0.5	<0.5	0.13	200	
			m/p-xylene	μg/L	1	<1	0.44	200	0
			o-xylene	µg/L	0.5	<0.5	0.37	158	0
			Styrene (Vinyl benzene)	µg/L	0.5	<0.5	0	200	0
			Isopropylbenzene (Cumene)	µg/L	0.5	<0.5	0	200	0



Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Original	Dunlicate		Parameter	Units	LOR-	Original	Duplicate	Criteria %	RPD %
SE164466.003	L B123077 021	Monocyclic	n-propylhenzene	ug/l	0.5	<0.5	0	200	0
3E104400.003	LB123077.021	Aremetic		μg/L	0.5	<0.5	0	200	
		Aromatic		μg/L	0.5	<0.5	0	200	
				µg/L	0.5	<0.5	0	200	0
				μg/L	0.5	<0.5	0	200	0
			sec-butylbenzene	μg/L	0.5	<0.5	0	200	0
			p-isopropyltoluene	μg/L	0.5	<0.5	0	200	0
			n-butylbenzene	µg/L	0.5	<0.5	0	200	0
		Nitrogenous	Acrylonitrile	µg/L	0.5	<0.5	0	200	0
		Oxygenated	Acetone (2-propanone)	μg/L	10	<10	0	200	0
		Compounds	MtBE (Methyl-tert-butyl ether)	μg/L	2	<2	0	200	0
			Vinyl acetate	μg/L	10	<10	0	200	0
			MEK (2-butanone)	μg/L	10	<10	0	200	0
			MIBK (4-methyl-2-pentanone)	μg/L	5	<5	0	200	0
			2-hexanone (MBK)	μg/L	5	<5	0	200	0
		Polycyclic	Naphthalene	μg/L	0.5	<0.5	0	200	0
		Sulphonated	Carbon disulfide	μg/L	2	<2	0	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	μg/L	-	5.3	4.81	30	10
			d4-1,2-dichloroethane (Surrogate)	μg/L	-	4.8	4.42	30	8
			d8-toluene (Surrogate)	μg/L	-	5.2	4.72	30	10
			Bromofluorobenzene (Surrogate)	μg/L	-	5.6	4.7	30	17
		Trihalomethan	Chloroform (THM)	µg/L	0.5	<0.5	0	200	0
		es	Bromodichloromethane (THM)	ug/L	0.5	<0.5	0	200	0
			Dibromochloromethane (THM)	ug/L	0.5	<0.5	0	200	0
			Bromoform (THM)		0.5	<0.5	0	200	0
SE164550.001	L B123077 022	Fumigants	2 2-dichloropropage	µg/l	0.5	<0.5	0	200	
02101000.001	LD ILCOTTICLE	i uniguno	1 2-dichloropropane	pg/2	0.5	<0.5	0	200	0
				pg/2	0.5	<0.5	0	200	0
			trong 1.2 dishlarananana	pg/L	0.5	<0.5	0	200	0
				μg/L	0.5	<0.5	0	200	0
			Disklass (Record there (CEO 10)	µg/L	0.5	<0.5	0	200	0
		Halogenated		µg/L	5	<5	0	200	
		Aliphatics	Chloromethane	μg/L	5	<5	0	200	0
			Vinyl chloride (Chloroethene)	µg/L	0.3	<0.3	0	200	0
			Bromomethane	μg/L	10	<10	0	200	0
			Chloroethane	μg/L	5	<5	0	200	0
			Trichlorofluoromethane	μg/L	1	<1	0	200	0
			lodomethane	μg/L	5	<5	0	200	0
			1,1-dichloroethene	μg/L	0.5	<0.5	0	200	0
			Dichloromethane (Methylene chloride)	μg/L	5	<5	0	200	0
			Allyl chloride	μg/L	2	<2	0	200	0
			trans-1,2-dichloroethene	μg/L	0.5	<0.5	0	200	0
			1,1-dichloroethane	μg/L	0.5	<0.5	0	200	0
			cis-1,2-dichloroethene	μg/L	0.5	<0.5	0	200	0
			Bromochloromethane	μg/L	0.5	<0.5	0	200	0
			1,2-dichloroethane	μg/L	0.5	<0.5	0	200	0
			1,1,1-trichloroethane	μg/L	0.5	<0.5	0	200	0
			1,1-dichloropropene	µg/L	0.5	<0.5	0	200	0
			Carbon tetrachloride	µg/L	0.5	<0.5	0	200	0
			Dibromomethane	µg/L	0.5	<0.5	0	200	0
			Trichloroethene (Trichloroethylene, TCE)	µa/L	0.5	<0.5	0	200	0
			1.1.2-trichloroethane	ug/L	0.5	<0.5	0	200	0
			1.3-dichloropropage	µg/l	0.5	<0.5	0	200	0
				µg/L	0.5	<0.5	0	200	0
			1 1 1 2-tetrachloroethane		0.5	<0.5	n	200	0
			cis-1 4-dichloro-2-butene	μ9/∟ 	1	-0.0	n	200	
				µy/L	0.5	~ ~ ~	0	200	0
				µg/L	0.5	<0.5 <0.5	0	200	0
			1,2,3-tricnioropropane	µg/L	0.5	<0.5	0	200	0
			trans-1,4-dichloro-2-butene	μg/L	1	<1	0	200	0
			1,2-dibromo-3-chloropropane	µg/L	0.5	<0.5	0	200	0
			Hexachlorobutadiene	µg/L	0.5	<0.5	0	200	0
		Halogenated	Chlorobenzene	µg/L	0.5	<0.5	0	200	0
		Aromatics	Bromobenzene	µg/L	0.5	<0.5	0	200	0



Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Original	Duplicate		Parameter	Units	L <u>OR</u>	Original	Duplicate	Crite <u>ria %</u>	RP <u>D %</u>
SE164550.001	LB123077.022	Halogenated	2-chlorotoluene	ug/L	0.5	<0.5	0	200	0
		Aromatics	4-chlorotoluene	μg/L	0.5	<0.5	0	200	0
			1,3-dichlorobenzene	μg/L	0.5	<0.5	0	200	0
			1,4-dichlorobenzene	μg/L	0.3	<0.3	0	200	0
			1,2-dichlorobenzene	μg/L	0.5	<0.5	0	200	0
			1,2,4-trichlorobenzene	μg/L	0.5	<0.5	0	200	0
			1,2,3-trichlorobenzene	μg/L	0.5	<0.5	0	200	0
		Monocyclic	Benzene	µg/L	0.5	<0.5	0	200	0
		Aromatic	Toluene	µg/L	0.5	1.4	1.43	66	6
			Ethylbenzene	µg/L	0.5	<0.5	0	200	0
			m/p-xylene	µg/L	1	<1	0.43	200	0
			o-xylene	µg/L	0.5	<0.5	0.23	200	0
			Styrene (Vinyl benzene)	µg/L	0.5	<0.5	0	200	0
			Isopropylbenzene (Cumene)	μg/L	0.5	<0.5	0	200	0
			n-propylbenzene	μg/L	0.5	<0.5	0	200	0
			1,3,5-trimethylbenzene	μg/L	0.5	<0.5	0	200	0
			tert-butylbenzene	μg/L	0.5	<0.5	0	200	0
			1,2,4-trimethylbenzene	μg/L	0.5	<0.5	0	200	0
			sec-butylbenzene	μg/L	0.5	<0.5	0	200	0
			p-isopropyltoluene	µg/L	0.5	<0.5	0	200	0
			n-butylbenzene	µg/L	0.5	<0.5	0	200	0
		Nitrogenous	Acrylonitrile	ug/L	0.5	<0.5	0	200	0
		Oxygenated	Acetone (2-propanone)	μg/L	10	<10	0	200	0
		Compounds	MtBE (Methyl-tert-butyl ether)	µg/L	2	<2	0	200	0
			Vinvl acetate	ug/L	10	<10	0	200	0
			MEK (2-butanone)	ug/L	10	<10	0	200	0
			MIBK (4-methyl-2-pentanone)	ug/L	5	<5	0	200	0
			2-hexanone (MBK)		5	<5	0	200	0
		Polycyclic	Nanhthalene	pg/_	0.5	<0.5	0 11	200	0
		Sulphonated	Carbon disulfide	P9'	2	<2	0	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	pg/L		5.4	5 19	30	3
		ounogates	d4-1 2-dichloroethane (Surrogate)	pg/L	_	4.8	4 72	30	2
			d& toluene (Surrogate)	μg/L		4.0	4.72	30	1
			Bromofluorobenzene (Surrogate)	μg/L		5.0	4.70	30	2
		Tribalamathan	Chloroform (THM)	μg/L	0.5	<0.5	4.52	200	
		milaiometrian	Bromedichloromethane (THM)	μg/L	0.5	<0.5	0	200	0
		65		μg/L	0.5	<0.5	0	200	0
			Bromoform (THM)	μg/L	0.5	<0.5	0	200	0
Veletile Retroleum	Hydrocorbono in We	otor		μg/c	0.5	<0.5	U		
	Duplicato		Paramatar	Unito	LOP	Original	Duplicate	Critoria %	
SEAGAAGE 002	L BADDOZZ 004			Units	EOK 50	original <50	Duplicate		
SE104400.003	LB123077.021			µg/∟	50	<50	0	200	0
			1RH C6-C9	µg/L	40	<40	0	200	0
		Surrogates		µg/L	-	5.1	4.63	30	9
			d4-1,2-dichloroethane (Surrogate)	µg/L	-	5.0	4.58	30	9
			d8-toluene (Surrogate)	μg/L	-	4.9	4.33	30	13
			Bromotluorobenzene (Surrogate)	µg/L	-	4.9	4.52	30	7
		VPH F Bands	Benzene (F0)	µg/L	0.5	<0.5	0	200	0
			TRH C6-C10 minus BTEX (F1)	μg/L	50	<50	0	200	0
SE164550.001	LB123077.022		TRH C6-C10	μg/L	50	<50	0	200	0
			IRH C6-C9	μg/L	40	<40	0	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	μg/L	-	5.1	4.97	30	3
			d4-1,2-dichloroethane (Surrogate)	μg/L	-	5.0	4.85	30	3
			d8-toluene (Surrogate)	μg/L	-	4.8	4.91	30	1
			Bromofluorobenzene (Surrogate)	μg/L	-	4.6	4.91	30	7
		VPH F Bands	Benzene (F0)	μg/L	0.5	<0.5	0	200	0
			TRH C6-C10 minus BTEX (F1)	µg/L	50	<50	-1.43	200	0



Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Low Level PAH (Po	ly Aromatic Hydro	carbons) in Water					Method: ME-(A	U)-[ENV]AN420
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB123078.002		Naphthalene	μg/L	0.02	25	40	60 - 140	62
		Acenaphthylene	µg/L	0.01	27	40	60 - 140	67
		Acenaphthene	µg/L	0.01	28	40	60 - 140	70
		Phenanthrene	μg/L	0.01	29	40	60 - 140	74
		Anthracene	μg/L	0.01	38	40	60 - 140	95
		Fluoranthene	µg/L	0.01	35	40	60 - 140	87
		Pyrene	µg/L	0.01	26	40	60 - 140	65
		Benzo(a)pyrene	μg/L	0.01	29	40	60 - 140	72
Trace Metals (Disso	olved) in Water by	ICPMS					Method: ME-(A	U)-[ENV]AN318
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB122972.002		Arsenic, As	µg/L	1	20	20	80 - 120	100
		Cadmium, Cd	µg/L	0.1	21	20	80 - 120	105
		Chromium, Cr	μg/L	1	22	20	80 - 120	108
		Copper, Cu	µg/L	1	22	20	80 - 120	108
		Lead, Pb	µg/L	1	23	20	80 - 120	113
		Nickel, Ni	µg/L	1	21	20	80 - 120	105
		Zinc, Zn	µg/L	5	20	20	80 - 120	102
TRH (Total Recover	rable Hydrocarbon	is) in Water					Method: ME-(A	U)-[ENV]AN403
Sample Number	•	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
L B123078 002		TRH C10-C14	ug/l	50	1200	1200	60 - 140	102
20120010.002		TRH C15-C28	pg,2	200	1500	1200	60 - 140	122
		TRH C29-C36	pg,2	200	1500	1200	60 - 140	125
	TRH F Bands	TRH >C10_C16 (F2)	pg/2	60	1400	1200	60 - 140	115
	TRATE Dands	TRH >C16.C34 (F3)	pg/2	500	1500	1200	60 - 140	128
		TRH >C34-C40 (F4)	µg/L	500	720	600	60 - 140	120
VOCs in Water			FØ -				Method: ME-(A	
Samplo Numbor		Paramotor	Unite	LOP	Posult	Expected	Critoria %	Pocovory %
L B123077 002	Halogenated	1 1-dichloroethene	ug/l	0.5	49	45.45	60 - 140	109
20120011.002	Alinhatics		pg/2	0.5	50	45.45	60 - 140	109
	/ iipilatios	Trichloroethene (Trichloroethylene TCE)	pg/2	0.5	49	45.45	60 - 140	109
	Halogenated		pg/2	0.5	50	45.45	60 - 140	109
	Monocyclic	Benzene	pg/2	0.5	49	45.45	60 - 140	108
	Aromatic		pg/2	0.5	50	45.45	60 - 140	109
	Alonado	Ethylbenzene	pg/2	0.5	50	45.45	60 - 140	109
		m/n-xylene	pg,2	1	90	90.9	60 - 140	109
		0-xvlene	µg/L	0.5	49	45.45	60 - 140	109
	Surrogates	Dibromofluoromethane (Surrogate)	µg/L		4.3	5	60 - 140	87
		d4-1 2-dichloroethane (Surrogate)		_	5.0	5	60 - 140	100
		d8-toluene (Surrogate)	µg/_	_	4.9	5	60 - 140	97
		Bromofluorobenzene (Surrogate)	ua/L	_	4.5	5	60 - 140	91
	Trihalomethan	Chloroform (THM)	µg/L	0.5	49	45.45	60 - 140	108
Volatile Petroleum I	Hydrocarbons in W	later					Method: ME-(A	U)-IENVIAN433
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recoverv %
LB123077.002		TRH C6-C10	ua/l	50	930	946.63	60 - 140	98
		TRH C6-C9	µg/t	40	760	818 71	60 - 140	92
	Surrogates	Dibromofluoromethane (Surrogate)	Pa ^r L	-	5.0	5	60 - 140	99
		d4-1,2-dichloroethane (Surrogate)	<u>ца/L</u>		5.2	5	60 - 140	104
		d8-toluene (Surrogate)	<u>ца/L</u>	-	5.4	5	60 - 140	107
		Bromofluorobenzene (Surrogate)	<u>ца/L</u>	-	5.0	5	60 - 140	100
	VPH F Bands	TRH C6-C10 minus BTEX (F1)	μg/L	50	630	639.67	60 - 140	99



### **MATRIX SPIKES**

Method: ME-(AU)-[ENV]AN433

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury (dissolv	ed) in Water				Met	hod: ME-(AU)-[	ENVJAN311	(Perth)/AN312
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE164459.016	LB123155.004	Mercury	mg/L	0.0001	0.0075	<0.0001	0.008	96

#### ce Metals (Dissolved) in Water by ICPMS

Trace Metals (Disa	solved) in Water by ICPMS				Met	nod: ME-(AU	<b>)-[ENV]AN318</b>	
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE164173A.02	LB122972.004	Zinc, Zn	µg/L	5	130	110	20	57 ⑤

#### VOCs in Water

QC Sample	Sample Number		Parameter	Units	LOR	Original	Spike	Recovery%
SE164466.004	LB123077.023	Fumigants	2,2-dichloropropane	µg/L	0.5	<0.5	-	-
			1,2-dichloropropane	µg/L	0.5	<0.5	-	-
			cis-1,3-dichloropropene	µg/L	0.5	<0.5	-	-
			trans-1,3-dichloropropene	µg/L	0.5	<0.5	-	-
			1,2-dibromoethane (EDB)	µg/L	0.5	<0.5	-	-
		Halogenated	Dichlorodifluoromethane (CFC-12)	µg/L	5	<5	-	-
		Aliphatics	Chloromethane	µg/L	5	<5	-	-
			Vinyl chloride (Chloroethene)	µg/L	0.3	<0.3	-	-
			Bromomethane	µg/L	10	<10	-	-
			Chloroethane	µg/L	5	<5	-	-
			Trichlorofluoromethane	μg/L	1	<1	-	-
			Iodomethane	µg/L	5	<5	-	-
			1,1-dichloroethene	µg/L	0.5	<0.5	45.45	114
			Dichloromethane (Methylene chloride)	µg/L	5	<5	-	-
			Allyl chloride	µg/L	2	<2	-	-
			trans-1,2-dichloroethene	µg/L	0.5	<0.5	-	-
			1,1-dichloroethane	µg/L	0.5	<0.5	-	-
			cis-1,2-dichloroethene	µg/L	0.5	<0.5	-	-
			Bromochloromethane	µg/L	0.5	<0.5	-	-
			1,2-dichloroethane	µg/L	0.5	<0.5	45.45	123
			1,1,1-trichloroethane	µg/L	0.5	<0.5	-	-
			1,1-dichloropropene	µg/L	0.5	<0.5	-	-
			Carbon tetrachloride	µg/L	0.5	<0.5	-	-
			Dibromomethane	µg/L	0.5	<0.5	-	-
			Trichloroethene (Trichloroethylene,TCE)	µg/L	0.5	<0.5	45.45	109
			1,1,2-trichloroethane	µg/L	0.5	<0.5	-	-
			1,3-dichloropropane	µg/L	0.5	<0.5	-	-
			Tetrachloroethene (Perchloroethylene,PCE)	µg/L	0.5	<0.5	-	-
			1,1,1,2-tetrachloroethane	µg/L	0.5	<0.5	-	-
			cis-1,4-dichloro-2-butene	µg/L	1	<1	-	-
			1,1,2,2-tetrachloroethane	µg/L	0.5	<0.5	-	-
			1,2,3-trichloropropane	µg/L	0.5	<0.5	-	-
			trans-1,4-dichloro-2-butene	µg/L	1	<1	-	-
			1,2-dibromo-3-chloropropane	µg/L	0.5	<0.5	-	-
			Hexachlorobutadiene	µg/L	0.5	<0.5	-	-
		Halogenated	Chlorobenzene	µg/L	0.5	<0.5	45.45	108
		Aromatics	Bromobenzene	µg/L	0.5	<0.5	-	-
			2-chlorotoluene	µg/L	0.5	<0.5	-	-
			4-chlorotoluene	µg/L	0.5	<0.5	-	-
			1,3-dichlorobenzene	µg/L	0.5	<0.5	-	-
			1,4-dichlorobenzene	µg/L	0.3	<0.3	-	-
			1,2-dichlorobenzene	µg/L	0.5	<0.5	-	-
			1,2,4-trichlorobenzene	μg/L	0.5	<0.5	-	-
			1,2,3-trichlorobenzene	μg/L	0.5	<0.5	-	-
		Monocyclic	Benzene	μα/L	0.5	<0.5	45.45	109
		Aromatic	Toluene	µg/L	0.5	<0.5	45.45	108
			Ethylbenzene	µg/L	0.5	<0.5	45.45	109
			m/p-xylene	µg/L	1	<1	90.9	112
			o-xylene	μα/L	0.5	<0.5	45.45	111
			·	· 3· -				



### **MATRIX SPIKES**

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

#### VOCs in Water (continued) Method: ME-(AU)-[ENV]AN433 QC Sample Sample Number Parameter Units LOR Original Spike Recovery% SE164466.004 LB123077.023 Monocyclic Styrene (Vinyl benzene) μg/L 0.5 <0.5 Aromatic Isopropylbenzene (Cumene) µg/L 0.5 <0.5 0.5 <0.5 n-propylbenzene µg/L 1,3,5-trimethylbenzene µg/L 0.5 < 0.5 tert-butylbenzene 0.5 <0.5 µg/L -1,2,4-trimethylbenzene 0.5 <0.5 µg/L 0.5 <0.5 sec-butylbenzene µg/L p-isopropyltoluene µg/L 0.5 <0.5 -0.5 <0.5 n-butylbenzene µg/L Nitrogenous <0.5 Acrylonitrile µg/L 0.5 -Oxygenated Acetone (2-propanone) µg/L 10 <10 -Compounds MtBE (Methyl-tert-butyl ether) 2 <2 µg/L <10 Vinyl acetate µg/L 10 MEK (2-butanone) µg/L 10 <10 --<5 MIBK (4-methyl-2-pentanone) 5 µg/L 2-hexanone (MBK) µg/L 5 <5 --Polycyclic Naphthalene µg/L 0.5 <0.5 Sulphonated Carbon disulfide <2 2 µg/L 89 Surrogates Dibromofluoromethane (Surrogate) µg/L -5.5 d4-1,2-dichloroethane (Surrogate) µg/L 4.8 93 -d8-toluene (Surrogate) 4.9 92 µg/L -Bromofluorobenzene (Surrogate) µg/L 5.1 85 Trihalometha Chloroform (THM) µg/L 0.5 <0.5 45 45 113 Bromodichloromethane (THM) 0.5 <0.5 µg/L nes

0.5

0.5

µg/L

µg/L

<0.5

<0.5

_

-

_

Dibromochloromethane (THM)

Bromoform (THM)



Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.



Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service .
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- O LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to Analytical Report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.



### SAMPLE RECEIPT ADVICE

- CLIENT DETAILS	S		
	-		
Contact	Craig Cowper	Manager	Huong Crawford
Client	SLR CONSULTING AUSTRALIA PTY LTD	Laboratory	SGS Alexandria Environmental
Address	Lego Building, 2 Lincoln Street (PO Box 176 NSW LANECOVE 1595) LANECOVE NSW 2066	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	02 9427 8100	Telephone	+61 2 8594 0400
Facsimile	02 9427 8200	Facsimile	+61 2 8594 0499
Email	ccowper@slrconsulting.com	Email	au.environmental.sydney@sgs.com
5	640 47035 St huse		Mar 24/4/2047
Project	610.17035 Stives	Samples Received	Mon 24/4/2017
Order Number	22525	Report Due	Tue 2/5/2017
Samples	2	SGS Reference	SE164550

_ SUBMISSION DETAILS

This is to confirm that 2 samples were received on Monday 24/4/2017. Results are expected to be ready by Tuesday 2/5/2017. Please quote SGS reference SE164550 when making enquiries. Refer below for details relating to sample integrity upon receipt.

- Samples clearly labelled Sample container provider Samples received in correct containers Date documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested
- Yes SGS Yes 24/4/2017 Yes 7.0°C Standard

Complete documentation received Sample cooling method Sample counts by matrix Type of documentation received Samples received without headspace Sufficient sample for analysis Yes Ice Bricks 2 Water COC Yes Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

2 Water samples have been placed on hold.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au



#### __ CLIENT DETAILS __

#### Client SLR CONSULTING AUSTRALIA PTY LTD

Project 610.17035 St lves

_ 3	SUMMARY	OF ANALYSIS							
	No.	Sample ID	Low Level PAH (Poly Aromatic Hydrocarbons) in	Mercury (dissolved) in Water	Trace Metals (Dissolved) in Water by ICPMS	TRH (Total Recoverable Hydrocarbons) in Water	VOCs in Water	Volatile Petroleum Hydrocarbons in Water	
	001	MW01	23	1	7	9	79	8	
	002	MW02	23	1	7	9	79	8	
		1	1	1	1	1	1		

SGS				С	HAI	IN C	DF C	US.	τοε	DY 8	s an	IAL	YSI	IS	8 REQUEST			Page1 of1	
SGS Environmental S	ervices	Compan	Company Name:				SLR Consulting						Project Name/No: 610			610.17035 St	610.17035 St Ives		
Unit 16, 33 Maddox St	reet	Address			2 Lind	coln St	reet							Ρι	Purchase Order No:	SGS PO 2252	25 Eurofins	3	
Alexandria NSW 2015					Lane	Cove	NSW 2	2066			1			Re	Results Required By:	Standard 5 da	ay turnarou	nd	
Telephone No: (02) 85	940400										1			Τe	Felephone:	0400 882 269			
Facsimile No: (02) 85	5940499	Contact	Name		Craig	Cowp	er				1			Fa	acsimile:	02 9427 8200	í.		
Email: au.samplereceipt.sy	dney@sgs.com			-										Er	Email Results:	ccowper@slr	consulting.	com	
Client Sample ID	Date Sampled	Lab Sample ID	WATER	SOIL	PRESERVATIVE	NO OF CONTAINERS	TRH / BTEX	PAH (low level)	OCP	PCB	VOC (8260)	Metals (8)	Asbestos (Absence / Presence)	Presence)	pHF and pHFox	Notes			
MW01	414/12		X		Ice	4	X	X			X	X		T					
MW02	e - laile		Х		Ice	4	x	X		-	X	X		+					
DUP03			x		Ice	1								+		+ + +		Hold	
	3		X			1									SGS EHS A	lexandria Labo	pratory	Hold	
										-				+	Received: 7	24 – Apr – 2017			
														-					
Relinquished By: Craig Co	owper	Dat	e/Time	e: 10/		7.0	2030	CI	01	5	Receiv	/ed By	<i>י</i> :			Date/Tin	ne		
Relinquished By:		Dat	e/Time	e: <b>"6</b> 6		1/14					Receiv	/ed By	<i>r</i> :		ADEUM	Date/Tin	ne 24/	4/17 105	
Samples Intact: Yes/No		Ten	Temperature: Ambient / Chilled d 2 2 Sample Cooler Sealed: Yes/ No Labor								Laborato	atory Quotation No: SLR Pricing 2015							
V		Cor	Comments: Methods and detection limits to suit NEPM 2013 and ANZECC2000 Lab Quotation No: Eurofins						Eurofins Version 13.CS2										

### Appendix D Report Number 610.17035-R02 Page 1 of 1 CALIBRATION



a h ta a a a a a a a a a a a a a a a a a	Pl	D CALIBRATION LOG	anaada aaaaaada addada ba ba ahaa ahaa aha
PID MODEL: MiniRae Lite PGM73	500 (10.6eV lamp)	PID SERIAL NUMBER: 595	-000501
Date: 28/03/2017		SLR Project Number:	610.(6577.00000
Isobutylene Gas Lot No:	1587028		
Isobutylene Standard (ppm):	100		
Fresh Air Cal (ppm):	0.0		
lsobutylene Cal (ppm):	100	<u></u>	
SLR Consultant Signature:	6	1	
Date:	12/04/201	<b>7</b> SLR Project Number:	610. 17091.00009
lsobutylene Gas Lot No:	1583028		
Isobutylene Standard (ppm):	100		
Fresh Air Cal (ppm):	0-0		
Isobutylene Cal (ppm):	100		
SLR Consultant Signature:		S.	· · ·
Date:	18/09/2017	SLR Project Number:	610.17035.00007
Isobutylene Gas Lot No:	1583028	Ŝ	
Isobutylene Standard (ppm):	100		
Fresh Air Cal (ppm):	0.0		
Isobutylene Cal (ppm):	(00	a al	
SLR Consultant Signature:			
Date:	21/09/2017	SLR Project Number:	610.17143.00001
Isobutylene Gas Lot No:	158 3028		
lsobutylene Standard (ppm):	100		
Fresh Air Cal (ppm):	00		
lsobutylene Cal (ppm):	100 -	nd	
SLR Consultant Signature:		,0	



······	PID C	ALIBRATION LOG				
PID MODEL: MiniRae Lite PGM735	500 (10.6eV lamp)	PID SERIAL NUMBER: 595-0	PID SERIAL NUMBER: 595-000501			
Date:	24/04/17	SLR Project Number:	610.17037.00001			
Isobutylene Gas Lot No:	158 3028					
Isobutylene Standard (ppm):	100					
Fresh Air Cal (ppm):	0					
Isobutylene Cal (ppm):	(00					
SLR Consultant Signature:						
Date:		SLR Project Number:				
Isobutylene Gas Lot No:						
Isobutylene Standard (ppm):						
Fresh Air Cal (ppm):						
Isobutylene Cal (ppm):						
SLR Consultant Signature:						
Date:		SLR Project Number:				
Isobutylene Gas Lot No:						
Isobutylene Standard (ppm):		· · ·				
Fresh Air Cal (ppm):						
Isobutylene Cal (ppm):		· ·				
SLR Consultant Signature:						
Date:		SLR Project Number:				
Isobutylene Gas Lot No:		I				
Isobutylene Standard (ppm):						
Fresh Air Cal (ppm):						
lsobutylene Cal (ppm):						
SLR Consultant Signature:						

SLR Consulting Australia Pty Ltd 2 Lincoln Street Lane Cove NSW 2066 Australia (PO Box 176 Lane Cove NSW 1595 Australia)

# RENTALS

# Equipment Certification Report - TPS 90FLMV Water Quality Meter

This Water Quality Meter has been performance checked and calibrated as follows:

Sensor	Concentration	Span 1	Span 2	Traceability Lot #	Pass?	
pН	pH 7.00 / pH 4.00	7.00 pH	4.00 pH	292530/290533	Ø	
Conductivity	12.88mS/cm	🔿୍ଧଠ mS/cm	[२. <del></del>	QA1331	d	
TDS	36 ppk	ppk	chick ppk	298901	2	
Dissolved Oxygen	Sodium Sulphite / Air	∅. ∞ ppm in Sodium Sulphite	$S - \gamma \mathcal{C}$ ppm Saturation in Air	1603215673 NJ1314	Ē-	
Check only						
Redox (ORP) *	Electrode operability test	240mV +/- 10%	244 mV	0647		
* This meter us	es an Ag/AgCl ORP elec	strode. To convert reading	is to SHE (Standard Hydr	ogen Electrode), add 199r	nV to the	

Battery Status 7.4 (min 7.2V) Electrical Safety Tag attached (AS/NZS 3760) Tag No: 001497Valid to: 9/6/2017Date: 13/4/2017

Thermo Físher

SCIENTIFIC

Temperature 21.6 °C Electrodes Cleaned and checked

Please check that the following items are received and that all items are cleaned and decontaminated before return. A minimum \$30 cleaning / service / repair charge may be applied to any unclean or damaged items. Items not returned will be billed for at the full replacement cost.

	Returned	Item 90FLMV Unit. Ops check/Battery status: pH sensor with wetting cap, 5m Conductivity/TDS/Temperature K=10 sensor, 5m Dissolved oxygen YSI5739 sensor with wetting cap, 5m Redox (ORP) sensor with wetting cap, 5m Power supply 240V to 12V DC 200mA Instruction Manual Quick Guide Syringe with storage solution for pH and ORP sensors Carry Case Check to confirm electrical safety (tag must be valid)
Date:	13/4/	2017

Signed:

Signed:

	TFS Reference	CS 006596	Return Date:	1	1	
	Customer Reference		Return Time:			
	Equipment ID	90FLMV SD	Condition on return:			
The second	Equipment Serial No.	51649				

"We do more than give you great equipment We give you great solutions!"							
Phone: (Free Call) 1300 735 295		Fax: (Free Call) 1800 675 123		1	Email: RentalsAU@Thermofisher.com		
Melbourne Branch	Sydney Branch	Adela	le Branch	Brisbane Branch		Perth Branch	
5 Caribbean Drive,	Level 1, 4 Talavera Road,	27 Bei	lah Road, Norwood,	Unit 2/5 Ross St		121 Beringatra Ave	
Scoresby 3179	North Ryde 2113	South	Australia 5067	Newstead 4006		Malaga WA 6090	
RENTALS

### Equipment Report – Geo Pump 2 PERISTALTIC PUMP

This pump has been cleaned and checked:

Thermo Fisher SCIENTIFIC

and the second se			
Id Clean a	and check all components	Ops check	
Date:	13/04/2017 Chec	cked by: MICENKO	
Signed:		Fly	
P	Electrical Safety Tag attached (At	\$/NZS 3760	
Ţ	ag No:001437		
V	alid to: $\frac{16/06}{2p17}$		

Please check that the following items are received and that all items are cleaned and decontaminated before return. A minimum \$20 cleaning / service / repair charge may be applied to any unclean or damaged items. Items not returned will be billed for at the full replacement cost.

Sent Recei	ved Returned	Item
T I	L.	Peristaltic Model (GP2) Pump, Alligator Clips
the L	1	Instruction Sheet
E E	1	3/8" Medical Grade Silicone Tubing (pump head) 30cm
E E	1	2 metal Hose Clips
	L	Transport Case
	l	Charger Electrical Safety Tag attached (AS/NZS 3760
M E	L2	2× BATTERY
Provide Contraction of Contraction o	E.	2 × WELL WEIGHT

Processors Signature/ Initials

EE Quote Reference	C5006596	Condition on return
Customer Ref		
Equipment ID	GP2SD	
Equipment serial no.		
Return Date	1 1	
Return Time		

Phone: (Free Call) 13	300 735 295 Envir	onmental Assessment Technolog	ies Fax: (Free	e Call) 1800 657 123
Melbourne Branch	Sydney Branch	Adelaide Branch	Brisbane Branch	Perth Branch
5 Caribbean Drive,	Level 1, 4 Talavera Road,	27 Beulah Road, Norwood,	Unit 2/5 Ross St	121 Beringarra Ave
Scoresby 3179	North Ryde 2113	South Australia 5067	Newslead 4006	Malaga WA 6090
Email: RentalsEnviroVIC@thermolisher.com	Email: RentalsEnviroNSW@thermofisher.com	Email: RentalsEnviroSA@thermofisher.com	Email: RentalsEnviroQLD@thermolisher.com	Email: RentalsEnviroWA@thermofisher.com

# RENTALS

#### Equipment Report – Micropurge Flow Cell

This unit has been performance checked as follows:

Operations Check		
Clean / decon		
Date:	017 Checked by: M(	LENKO

Please check that the following items are received and that all items are cleaned and decontaminated before return. A minimum \$20 cleaning / service / repair charge may be applied to any unclean or damaged items. Items not returned will be billed for at the full replacement cost.

Sent	Received	Returned	Item	
			Sample Pro Pump	
	[]		Flow Cell	
Ľ,	- - []***@@@		Ś-way valve	
5			Connecting tubes (3)	
× **	Consider and		Optional – cable	
	i da da		•	
0				$e_{\mu}^{(p)}$ , $e_{\mu}^{(p)}$ , $e_{\mu}^{(p)}$
Proces	sors Signatur	e/ Initials	MS	

Quote Reference	CS006596	Condition on return
Customer Ref		
Equipment ID	EFC-500-3	
Equipment serial no.		
Return Date	17 × 217	
Return Time		· · · · · · · · · · · · · · · · · · ·

"We do more than give you great equipment... We give you great solutions!"

Phone: (Free Call) 1300 735 295		Fax: (Free Call) 1800 675 123		Email: RentalsAU@Thermofisher.com	
Melbourne Branch 5 Caribbean Drive, Scoresby 3179	Sydney Branch Level 1, 4 Talavera Road, North Ryde 2113	Adetaide Branch 27 Beulah Road, Norwood, South Australia 5067	Brisbane Branch Unit 2/5 Ross St Newstead 4006	Perth Branch 121 Beringatra Ava Malaga WA 6090	
Issue 5		Sep 11		G0548	

.....

## RENTALS

#### Equipment Report – Solinst Model 122 Interface Meter

This Meter has been performance checked / calibrated* as follows:

Cleaned/Tested	Pass? ⊟Yes	□No		
BProbe				
BTape/Reel	S.C			
B Performance Test & Battery	/oltage Check ( v) 8	.0v minimum		
Date: 574/20	>() Check	ed by:	Jerg	
Signed:	\$n.	,		

Please check that the following items are received and that all items are cleaned and decontaminated before return. A minimum \$20 cleaning / service / repair charge may be applied to any unclean or damaged items. Items not returned will be billed for at the full replacement cost.

Sent	Received	Returned	Item
	Ľ)		Operations check OK
		C)	Plastic Box / Bag
0		E)	Spare 9V Battery Qty
ß		E.1	Probe Cleaning Brush
E		E.F	Decon
			Instruction leaflet
			Tape Guide
[]]		Li	
Processors Signature/ Initials			MS

Quote Reference	CS006596	Condition on return
Customer Ref		
Equipment ID	SOL122-67	
Equipment serial no.	268-062	
Return Date	1 1	
Return Time		

"We do more than give you great equipment ... We give you great solutions!"

Phone: (Free Call) 13	00 735 295	Fax: (Free Call) 1800 675 123		Email: RentalsAU@ Inermotisher.com
Melbourne Branch 5 Caribbean Drive, 5 Scoreshy 3179	Sydney Branch Level 1, 4 Talayera Road, North Rydå 2113	Adelaide Branch 27 Beulah Road, Norwood, South Australia 5067	Brisbane Branch Unit 2/5 Ross St Newstead 4005	Perth Branch 121 Beringana Ave Mataga WA 6090
Issue 5	<u> </u>	Sep 11		G0561